Современная картина происхождения Вселенной

Технический прогресс не стоит на месте. Научно-техническая революция ХХ века значительно расширила горизонты человеческих знаний. Человек создал ракету, побывал в космосе, созданы сверхмощные оптические и радиотелескопы, компьютеры, позволяющие рассчитывать и модулировать глобальные процессы, происходящие в масштабах Солнечной системы и Вселенной. На сегодняшний день современное естествознание объясняет возникновение Вселен­ной с помощью теории Большого взрыва.

Рождение Вселенной

Примерно 15 млрд. лет отделяет нашу эпоху от начала про­цесса расширения Вселенной, когда вся наблюдаемая нами Все­ленная была сжата в комочек, в миллиарды раз меньший була­вочной головки. Если верить математическим расчетам, то в на­чале расширения радиус Вселенной был и вовсе равен нулю, а ее плотность равна бесконечности. Это начальное состояние назы­вается сингулярностью - точечный объем с бесконечной плотно­стью. Известные законы физики в сингулярности не работают.

Более того, нет уверенности, что наука когда-либо познает и объяснит такие состояния. Так что если сингулярность и являет­ся начальным простейшим состоянием нашей расширяющейся Вселенной, то наука не располагает о нем информацией.

В состоянии сингулярности кривизна пространства и вре­мени становится бесконечной, сами эти понятия теряют смысл. Идет не просто замыкание пространственно-временного кон­тинуума, как это следует из общей теории относительности, а его полное разрушение. Правда, понятия и выводы общей тео­рии относительности применимы лишь до определенных пре­делов - масштаба порядка 10-33 см. Дальше идет область, в ко­торой действуют совсем иные законы. Но если считать, что начальная стадия расширения Вселенной является областью, в которой господствуют квантовые процессы, то они должны подчиняться принципу неопределенности Гейзенберга, соглас­но которому вещество невозможно стянуть в одну точку. То­гда получается, что никакой сингулярности в прошлом не бы­ло и вещество в начальном состоянии имело определенную плотность и размеры. По некоторым подсчетам, если все веще­ство наблюдаемой Вселенной, которое оценивается примерно в 1061 г, сжать до плотности 1094 г/см3, оно заняло бы объем около 10-33 см3, что примерно в 1000 раз больше объема ядра атома урана. Его нельзя было бы разглядеть и в электронный микроскоп.

Причины возникновения такого начального состояния (или сингулярности - эту гипотезу и сегодня поддерживают многие ученые), а также характер пребывания материи в этом состоя­нии считаются неясными и выходящими за рамки компетенции любой современной физической теории. Неизвестно также, что было до момента взрыва. Долгое время ничего нельзя было сказать и о причинах Большого взрыва, и о переходе к расши­рению Вселенной, но сегодня появились некоторые гипотезы, пытающиеся объяснить эти процессы.

Итак, очевидно, что исходное состояние перед «началом» не является точкой в математическом смысле, оно обладает свойствами, выходящими за рамки научных представлений се­годняшнего дня. Не вызывает сомнения, что исходное состоя­ние было неустойчивым, породившим взрыв, скачкообразный переход к расширяющейся Вселенной. Это, очевидно, было самое простое состояние из всех, реализовавшихся позднее вплоть до наших дней. В нем было нарушено все, что нам при­вычно: формы материи, законы, управляющие их поведением, пространственно-временной континуум. Такое состояние можно назвать хаосом, из которого в последующем развитии системы шаг за шагом формировался порядок.

Хаос оказался неустойчивым, это послужило исходным толчком для последующего развития Вселенной.

Еще Демокрит утверждал, что мир состоит из атомов и пустоты - абсолютно однородного пространства, разделяю­щего атомы и тела, в которые они соединяются. Современная наука на новом уровне интерпретирует атомизм, и вносит со­вершенно иной смысл в понятие среды, разделяющей части­цы. Эта среда отнюдь не является абсолютной пустотой, она вполне материальна и обладает весьма своеобразными свой­ствами, пока еще мало изученными. По традиции, эта среда, неотделимая от вещества, продолжает называться пустотой, вакуумом.

Вакуум - это пространство, в котором отсутствуют реаль­ные частицы и выполняется условие минимума плотности энергии в данном объеме. Казалось бы, раз нет реальных час­тиц, то пространство пусто, в нем не может содержаться энергия, даже минимальная. Но это представление пришло к нам из классической физики. Квантовая же теория, опираясь на принцип неопределенности Гейзенберга, опровергает его. Мы помним, что применительно к теории поля принцип не­определенности утверждает невозможность одновременного точного определения напряженности поля и числа частиц. Раз число частиц равно нулю, то напряженность поля не может равняться нулю, иначе оба параметра будут извест­ны, и принцип неопределенности будет нарушен. Напряжен­ность поля в вакууме может существовать лишь в форме флуктуационных[1] колебаний около нулевого значения. Соот­ветствующая этим колебаниям энергия будет минимально возможной.

Перейти на страницу: 1 2

Дополнительно

Новая фундаментальная физическая константа, лежащая в основе постоянной Планка
Открыта новая фундаментальная физическая константа hu “фундаментальный квант действия” [11 - 15]. Ее значение равно [11,12,23]: hu=7,69558071(63)•10-37Дж с. На основе классических представлений для электромагнетизма получены еще две физиче ...

Шероховатость поверхности и её изображение на чертежах
КОНСТРУКЦИЯ (объект производства) ТЕХНОЛОГИЯ (производственные процессы) ↔ ↔ ↔ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ...

Меню сайта