Обзор схем построения лазерных дифрактометров

Интенсивное развитие этих систем началось в начале 80-х годов. Построение голографических и дифракционных оптических систем для метрологии основано на получении изображений Френеля, либо Фурье исследуемого объекта с последующим анализом их параметров фото-электической измерительной системой.

Основным преимуществом таких метрологических систем, перед ви-зуальными оптическими измерительными приборами, является высокая производительность, что позволяет автоматизировать ряд метрологических процессов в промышленности. Где требуется интегральная комплексная оценка качества изделия.

Для формирования изображений Фурье или Френеля исследуемого объекта используют когерентный оптический спектроанализатор прост-ранственных сигналов, схему построения и геометрические параметры которого выбирают в зависимости от характера решаемой задачи.

В настоящее время уже стала классической схема когерентного оптического спектроанализатора (КОС), приведенная на рис.1.

Рис.1. Принципиальная схема когерентного оптического спектро-

анализатора:

1. Лазер;

2. Телескопическая схема Кеплера;

3. Входной транспарант;

4. Фурье-объектив;

5. Дифракционное изображение.

КОС состоит из расположенных последовательно на одной оптической оси источника когерентного излучения - лазера 1 и телескопической систе-мы 2 Кеплера, формирующей плоскую когерентную световую волну. Эта волна падает на входной транспарант 3 с фотографической записью исследуемого сигнала. Входной транспарант 3 расположен в передней фокальной плоскости фурье-объектива 4 (объектива свободного от аберра-ции дисторсии и поперечной сферической ) с фокусным растоянием . На входном транспаранте 3 световая волна дифрагирует, и фурье-объективом 4 в задней плоскости 5 формируется дифракционное изображение исследуемого сигнала, которое является его фурье-образом и описывается выражением

, где А0 -амплитуда плос-кой монохроматической световой волны в плоскости ; - длина волны; - пространственные частоты, равные и , где х2, у2 - пространственные координаты в плоскости 5.

Таким образом, распределение комплексных амплитуд световых полей в задней и передней плоскостях фурье-объектива 4 оптической системы связаны между собой парой преобразований Фурье. Поле в задней фокальной плоскости является пространственным амплитудно-фазовым спектром сигнала, помещенного в его передней фокальной плоскости.

Описанная выше оптическая система выполняет спектральное разложе-ние пространственного сигнала и является когерентным оптическим спектроанализатором. Он позволяет анализировать одновременно ампли-тудный и фазовый спектры как одномерных, так и двумерных пространст-венных сигналов.

Перейти на страницу: 1 2 3

Дополнительно

Эволюция энергетических процессов у эубактерий
В главах 11 и 12 были обсуждены проблемы возникновения первичной клетки из гипотетической протоклетки и последующего пути прогрессивной эволюции первичной клетки. Как было обнаружено в 70-х гг., на раннем этапе этого пути могло произойти выделение трех основных ветвей, каждая из которых самостояте ...

Система автоматического регулирования
Современная теория автоматического регулирования является основной частью теории управления. Система автоматического регулирования состоит из регулируемого объекта и элементов управления, которые воздействуют на объект при изменении одной или нескольких регулируемых переменных. Под влиянием входны ...

Меню сайта