Генетический уровень биологических структур

Представление о структурных уровнях организации живых систем сформировалось под влиянием открытия клеточной теории строения живых тел. В середине прошлого века клетка рассматривалась как последняя единица живой материи, наподобие атома неорганиче­ских тел. Из клеток мыслились построенными все живые системы различного уровня организованности. Такие идеи высказывал, например, один из создателей клеточной теории Маттиас Шлейден. Дру­гой выдающийся биолог Эрнст Геккель шёл дальше и выдвинул гипотезу, согласно которой протоплазма клетки также обладает определенной структурой и состоит из субмикроскопических частей. Таким образом, в живой системе можно выделить но­вый структурный уровень организации.

Эти идеи, далеко опережающие научные знания сво­ей эпохи, встречали явное сопротивление, с одной сто­роны, последователей редукционизма, стремившихся свести процессы жизнедеятельности к совокупности оп­ределенных химических реакций, а с другой – защит­ников витализма, которые пытались объяснить специ­фику живых организмов наличием в них особой "жизненной силы" (от лат. vitalis – жизненный).

Идеи редукционистов находили поддержку со стороны представителей механистического и "вульгарного" мате­риализма, первые из которых пытались объяснить законо­мерности живой природы с помощью простейших механи­ческих и физических понятий и принципов, вторые же стремились редуцировать, свести эти законы к закономер­ностям химических реакций, происходящих в организме. Более того, некоторые представители "вульгарных" мате­риалистов – Людвиг Бюхнер и Якоб Молешотт – даже утверждали, что мозг порожда­ет мысль подобно тому, как печень выделяет желчь.

Несмотря на эти философские дискуссии между меха­ницистами и виталистами, учёные-экспериментаторы пы­тались конкретно выяснить, от каких именно структур за­висят специфические свойства живых организмов, и по­этому продолжали исследовать их на уровне не только клетки, но также и клеточных структур. В первую очередь они исследовали структуру белков и выяснили, что они построены из 20 аминокислот, которые соединены длинными полипептидными связями, или цепями. Хотя в состав белков человеческого организма входят все 20 аминокислот, но совершенно обязательны для него толь­ко 9 из них. Остальные, по-видимому, вырабатываются са­мим организмом.

Характерная особенность аминокислот, содержащихся не только в человеческом организме, но и в других жи­вых системах (животных, растениях и даже вирусах), со­стоит в том, что все они являются левовращающими плоскость поляризации изомерами, хотя в принципе су­ществуют аминокислоты и правого вращения. Обе формы таких изомеров почти одинаковы между собой и разли­чаются только пространственной конфигурацией, и по­этому каждая из молекул аминокислот является зеркаль­ным отображением другой. Впервые это явление открыл выдающийся французский учёный Луи Пастер, исследуя строение веществ биологического проис­хождения. Он обнаружил, что такие вещества способны отклонять поляризованный луч и поэтому являются оп­тически активными, вследствие чего были впоследствии названы оптическими изомерами. В отличие от этого у молекул неорганических веществ эта способность отсут­ствует и построены они совершенно симметрично.

На основе своих опытов Л. Пастер высказал мысль, что важнейшим свойством всей живой материи является их молекулярная асимметричность, подобная асиммет­ричности левой и правой рук. Опираясь на эту анало­гию, в современной науке это свойство называют моле­кулярной хиральностью. (Этот термин происходит от греч. cheir – рука). Интересно заметить, что если бы человек вдруг превратился в свое зеркальное отображе­ние, то его организм функционировал бы нормально до тех пор, пока он не стал бы употреблять пищу расти­тельного или животного происхождения, которую он не смог бы переварить.

Перейти на страницу: 1 2 3 4

Дополнительно

Счетчики ядерного излучения
Реальная перспектива использования человеком огромных энергий, скрытых в недрах атома, появилась впервые в 1939 году. На сегодняшний день широкое практическое применение получают различного рода ядерные излучения, несмотря на то, что они опасны для организма человека и в то же время неощущаемы, п ...

Эвристика и ее применение
В своей повседневной жизни человек все время сталкивается с задачами легкими для него, но с трудом решаемыми машинами. Тяжело создать программу, которая предусматривала бы все. Поэтому в условиях недостаточности или сложности информации человек практически незаменим. Преодолеть же пропасть между м ...

Меню сайта