Программная эмуляция работы ведущего колеса с внутренним подрессориванием на поверхности с неровностями почвы

Как уже неоднократно упоминалось выше, результаты кинематического и кинетостатического анализа передаются в ПЭВМ с целью построения адекватной модели движение колеса по поверхности с неровностями почвы.

Данная программная эмуляция, преследуя определенные и описанные выше цели, в качестве объектов исследования использует ключевые точки колеса. В данном случае в их роли применяются координаты точек шарниров упругих элементов как необходимые и достаточные условия, однозначно определяющие положение каждого из элементов колеса в пространстве и времени. Более того, для каждой из указанных точек также измерялись величины реакций, размер деформации упругого элемента, величину крутящего момента. В силу громоздкости вычислений и невозможности проверки полученных данных на опытно-экспериментальной модели остановимся лишь на геометрическом моделировании работы.

Обратимся к рисункам 5.1–5.3. На них в виде графических примитивов, заменяющих элементы колеса, изображены стадии движения колеса при наезде на неровность. Рассмотрим их подробнее.

Підпис: Рисунок 5.1 Моделирование движения колеса по поверхности с неровностями. Первая стадия. Скриншот программы. На рисунке 5.1 мы видим, что колесо занимает нейтральное положение, обод равноудален от ведомых ступиц, упругие элементы равнодеформируемы. В таком режиме колесо движется с наименьшими потерями крутящего момента (98%–100% от номинала), не вызывая каких либо перемещений в механизме подрессоривания.

Рисунок 5.2 показывает стадию наезда колеса на неровность почвы, когда высота неровности меньше вертикального хода обода, составляющего 70–90 мм, в зависимости от конструктивных параметров.

Підпис: Рисунок 5.2 Моделирование движения колеса по поверхности с неровностями. Вторая стадия. Скриншот программы.

Підпис: Рисунок 5.2 Моделирование движения колеса по поверхности с неровностями. Вторая стадия. Скриншот программы. Зубчатый обод, замененный в программе на окружность соответствующих пропорций, перемещается по вертикали относительно центра вращения самого колеса, приводя в движение упругие элементы (треугольники) и ведомые ступицы (прямые линии). Упругие элементы претерпевают деформацию, расширяясь в верхней части колеса и сжимаясь в нижней. Колесо движется с небольшими потерями крутящего момента (92%–98% от номинала, по оценочным расчётам программы). Перемещения ведущих ступиц укладываются в расчетные. Реакции в шарнирах не превышают максимально предусмотренные.

И, наконец, на рисунке 5.3 показан момент максимального перемещения обода колеса, с максимальной упругой деформацией подрессоривающих элементов.

Підпис: Рисунок 5.3 Моделирование движения колеса по поверхности с неровностями. Третья стадия. Скриншот программы.

При этом ведомые ступицы максимально перемещаются вдоль направляющих, выбирая весь заложенный зазор, упругие элементы испытывают максимальную деформацию (до 3/5 от запаса прочности), крутящий момент падает до 88%–90% от номинала (однако, так как данный режим работы колеса занимает не более 1,2–2% от всего времени работы, это не вызывает беспокойства с точки зрения физической реализации движения трактора).

Основываясь на результатах описанного выше моделирования процесса работы ведущего колеса с внутренним подрессориванием, можно сделать вывод о принципиальной реализуемости идей, заложенных в конструкцию данного колеса. Однако не следует забывать, что проведенный эксперимент — все лишь моделирование в машинных условиях, и его результаты обязательно требуют подтверждения экспериментом «в железе».

Перейти на страницу: 1 2 3

Дополнительно

Разработка сенсора на поверхностно-акустических волнах
В условиях современности проблема контроля за состоянием окружающей среды выходит на все более ведущее место. Контроль этот осуществляется как стационарными приборами, так и портативными. К стационарным приборам можно отнести инфракрасные спектрометры, газовые хроматографы, массовые спектрометры и ...

Солнце и его влияние на землю
Каждому наверняка известно, что на Солнце нельзя смотреть невооруженным глазом, а тем более в телескоп без специальных, очень темных светофильтров или других устройств, ослабляющих свет. Пренебрегая этим советом, наблюдатель рискует получить сильнейший ожог глаза. Самый простой способ рассматриват ...

Меню сайта