Движение и реорганизация упругих систем

Когда временные интервалы соответствуют скорости, силы противодействия исчезают. Размеры систем тоже изменяются, уменьшаясь с увеличением скорости, поскольку уменьшается средняя скорость электромагнитного поля в промежутках между элементами, уменьшаются длины стоячих волн и расстояния между элементами. После этого потенциальные ямы излучаются точно туда, где проходят движущиеся элементы, система движется по инерции, и силы противодействия не возникают.

Тройка диполей, показанная на рис.1, при движении вправо по инерции будет выглядеть, как показано на рис.2. Здесь диполь 3 (задний) опережает в своем вращении диполя 2. Его отрицательный заряд уже был вверху некоторое время назад, когда показанный на рисунке фрагмент волны проходил через него. Диполь 1 (передний) отстает в своем вращении. Его отрицательный заряд окажется вверху тогда, когда через него будет проходить волна, излученная диполем 2 и показанная на рисунке. Диполи 1 и 3 и в этом положении параллельны полю, но оно не параллельно плоскости рисунка и потому не показано. Таким образом, все три диполя движутся, оставаясь в устойчивых положениях. Но при ускорениях они не могут мгновенно повернуться относительно друг друга. Для этого нужно двигать систему некоторое время, преодолевая силы устойчивости.

..

Ели бы все отрицательные заряды были здесь в верхнем положении, то на диполи 1 и 3 действовали бы силы, движущие их назад - в те участки поля, что показаны на рисунке. А их излучения оказались бы слева от диполя 2 - сзади, и на него тоже действовали бы такие силы. Кроме того, действовали бы силы, стремящиеся довернуть диполи в положения, показанные на рисунке 2. До тех пор, пока не сформируются временные интервалы, т.е. пока диполи не повернутся относительно друг друга, силы противодействия не исчезнут, и система не будет двигаться по инерции.

Системе диполей на рис.2 сопоставлена система часов, стрелки которых вращаются как бы вместе с диполями. Разность хода часов показывает временной интервал - относительное опережение или запаздывание местных процессов вращения и излучения. Изображая элементы (точнее: процессы в них) в виде часов в системе координат, можно одним значком показать и текущую фазу процесса, и его координаты. Так и сделаем потом.

С точки зрения классической физики, в природе не существуют статические поля, способные удерживать элементы на расстояниях друг от друга, создавая объемные тела и структуры, и мы вынуждены полагать, что для этого необходимы когерентные волновые поля и процессы. Значит, целостность тела или структуры возможна лишь тогда, когда в них присутствует объемный когерентный процесс - некая система "местных часов", единого внутреннего времени. Любая пространственная структура, если цела, содержит в себе такую систему "часов". А изменение скорости структур связано с перестройкой этой системы единого времени и без нее не происходит.

Самоорганизующаяся система есть единый и цельный электромагнитный объект, поэтому конечный результат изменений, вызванных в ней движением, описывается преобразованиями Лоренца для электромагнитных объектов и процессов, движущихся в пустом пространстве или в той электромагнитной среде, в которую она помещена и сквозь которую движутся в ней волны. Мы привыкли понимать Лоренцево "местное время" как нечто сугубо теоретическое и абстрактное. Теперь же мы знаем объект, в котором можно разместить вполне реальные часы местного времени. Мы используем это в следующем разделе, где рассмотрим свойства самоорганизующихся систем, применяемых в качестве меры пространства-времени.

Перейти на страницу: 1 2 3 4 5

Дополнительно

Исследование способов повышения эффективности работы гусеничного движителя
Магистерская диссертация выполнена на 78 страницах машинописного текста и включает 12 рисунков, 2 таблицы и список литературы из 27 наименований. Ключевые слова: эффективность, принцип работы, гусеничный движитель, ведущая звездочка, навесоспособность, плавность хода, почвосбережение, внутренне ...

Технология выращивания кукурузы на зерно
Кукуруза — одна из основных культур современного мирового земледелия. Это культура разносто­роннего использования и высокой урожайности. На продовольствие в странах мира используется около 20% зерна кукурузы, на технические цели — 15 — 20% и примерно две трети — на корм. Кукурузу выращивают во ...

Меню сайта