Первичные черные дыры

Существуют ли малые черные дыры? До работы С. Хокинга черные дыры могли считаться образцами идеальных захоронений вещества во Вселенной. Попавшее в них вещество не только нельзя извлечь, но даже память о его свойствах стирается, отсекаясь мощным гравитационным полем. Энергию этого вещества можно было считать безвозвратно утерянной. После работы С. Хокинга представление о черных дырах претерпело существенное изменение. Черные дыры в результате квантового распада со временем возвращают запасенную энергию обратно. Они могут служить своеобразным преобразователем вещества из одной формы в дру“ гую. Дело в том, что черные дыры с одинаковой массой, образованные, например, при коллапсе нейтрального вещества и антивещества, неотличимы и при квантовом распаде излучают равное число частиц и античастиц { Это свойство, вообще говоря, может -нарушаться, если при квантовом испарении рождаются частицы, которые затем распада-птся с нарушением СP-ннвариантности.}. В процессе образования и последующего испарения черных дыр могут нарушаться законы сохранения барием-ного и лептонного зарядов.

При обсуждении этих и многих других удивительных следствий явления квантового испарения черных дыр сталкиваются, однако, со следующим чрезвычайно важным вопросом: могут ли существовать в природе малые черные дыры, поскольку следствия, вытекающие из эффекта Хокинга, касаются главным образом черных дыр с малой массой?

В 1966 г. советские ученые Я. Б. Зельдович и И. Д. Новиков и в 1971 г, С. Хокинг обратили внимание на то, что, хотя в настоящее время образование черных дыр с массой, меньшей солнечной, невозможно, на раннем этапе развития Вселенной малые черные дыры могли возникать из первоначальных неоднородностей крайне плотного расширяющегося вещества. Хотя давление вещества в ту эпоху также было крайне велико, перепады давления, а следовательно, и силы, с ними связанные, практически отсутствовали. Расширение более плотной области происходит медленнее и вскоре сменяется сжатием. Распределение вещества при этом становится заметно неоднородным, однако для возникновения значительного градиента давления требуется время порядка отношения размера области к скорости звука в среде. Если процесс сжатия происходит столь быстро, что градиент давления не успевает возникнуть, ничто не препятствует образованию черной дыры. Подобные черные дыры, образующиеся на раннем этапе эволюции Вселенной, получили название первичных. На стадии, когда плотность вещества равна р, могут возникать черные

дыры с массой M~- sqrt(c6/pG3) -~ 1,6 • 1042 г2р-1/2(плотность р в граммах на кубический сантиметр).

Стандартный сценарий эволюции Вселенной. Прежде чем перейти к обсуждению космологических следствий эффекта квантового испарения первичных черных дыр, остановимся (по необходимости кратко) на основных этапах развития Вселенной. В настоящее время средняя плотность вещества по Вселенной крайне мала. Она составляет всего лишь от З*10-31 до 10-29 г/см3. Однако известный факт разбегания галактик указывает на то, что в отдаленном прошлом средняя плотность вещества была гораздо выше? Существование реликтового излучения с температурой 2,7 К свидетельствует в пользу того, что в более ранние времена вещество во Вселенной было сильно нагрето.

Известные в настоящее время данные наблюдений (высокая степень — до 0,01% — изотропности реликтового излучения, изотропность распределения галактики радиоисточников, довольно высокая степень однородности распределения галактик и их систем в масштабах больше 100 мегапарсек) позволяют заключить, что в среднем при усреднении по масштабам порядка 100 мегапарсек распределение вещества во Вселенной довольно однородно и изотропно. С другой стороны, существование галактик и их систем указывает на то, что в-меньших масштабах имеются значительные отклонения от равномерного распределения.

Все эти факты находятся в соответствии с принятой в настоящее время стандартной моделью “горячей Вселенной”. Согласно этой модели на ранних этапах Вселенная представляла собой в среднем однородное и изотропное распределение горячей материи, расширение которой началось примерно 10—20 млрд. лет тому назад. Формально (если, не задумываясь, верить в неограниченную применимость теории Эйнштейна) это расширение началось из состояния вещества с бесконечной плотностью. Однако по крайней мере при плотности, большей чем pg ~ c5/hG2~ 1093 г/см3, классическая теория гравитации неприменима из-за большой величины квантово-гравитационных эффектов. Обычные представления о структуре и свойствах пространства-времени, по-видимому, требуют значительного пересмотра при значениях кривизны порядка 1066 см-2, соответствующего этой плотности. Поэтому фактически обычные классические уравнения Эйнштейна описывают эволюцию Вселенной, начиная с некоторого момента времени ta, в который вещество имело большое, но конечное значение плотности ро. Обычно полагают t0 ~ 10-43 с, ро <~ 1093 г/см3. Распределение плотности вещества в этот момент предполагается в среднем однородным и изотропным.

Перейти на страницу: 1 2

Дополнительно

Проектирование технологии ремонта гидроцилиндров с использованием полимерных материалов
Одно из направлений повышения эффективности производства - его переоснащение современной техникой, внедрение передовых технологических процессов и достижений современной науки. В лесной промышленности и лесном хозяйстве таким направлением наряду с увеличением единичной мощности выпускаемой те ...

Спутниковая связь
Современные организации характеризуются большим объемом различной информации, в основном электронной и телекоммуникационной, которая проходит через них каждый день. Поэтому важно иметь высококачественный выход на коммутационные узлы, которые обеспечивают выход на все важные коммуникационные линии. ...

Меню сайта