Статистика объектов нечисловой природы как часть прикладной статистики

В течение 70-х годов на основе запросов теории экспертных оценок (а также социологии, экономики, техники и медицины) развивались конкретные направления статистики объектов нечисловой природы. Были установлены связи между конкретными видами таких объектов, разработаны для них вероятностные модели (см. обзор [67]). Итоги этого периода подведены в монографиях [35,68,69]).

Следующий этап - выделение статистики объектов нечисловой природы в качестве самостоятельного направления в прикладной статистике, ядром которого являются методы статистического анализа данных произвольной природы. Программа развития этого нового научного направления впервые была сформулирована в статье [70]. Реализация этой программы была осуществлена в 80-е годы. Для работ этого периода характерна сосредоточенность на внутренних проблемах нечисловой статистики. Ссылки на конкретные монографии, сборники, статьи и иные публикации нескольких десятков авторов приведены в обзорах [56,57,67]. Отметим лишь сборник [71], специально посвященный нечисловой статистике, и диссертацию [72], относящуюся к непараметрической теории парных сравнений.

К 90-м годам статистика объектов нечисловой природы с теоретической точки зрения была достаточно хорошо развита, основные идеи, подходы и методы были разработаны и изучены математически, в частности, доказано достаточно много теорем. Однако она оставалась недостаточно апробированной на практике. Это было связано как с ее сравнительной молодостью, так и с общеизвестными особенностями организации науки в 80-е годы, когда отсутствовали достаточные стимулы к тому, чтобы теоретики занялись широким внедрением своих результатов. И в 90-е годы наступило время от математико-статистических исследований перейти к применению полученных результатов на практике. Эта тенденция хорошо отражена в монографиях [73,74], материалах международной конференции "Управление большими системами" [75].

Следует отметить, что в статистике объектов нечисловой природы, как и в других областях прикладной математической статистики и прикладной математики вообще, одна и та же математическая схема может с успехом применяться и в технических исследованиях, и в медицине, и в социологии, и для анализа экспертных оценок, а потому ее лучше всего формулировать и изучать в наиболее общем виде, для объектов произвольной природы.

10. Основные идеи статистики объектов нечисловой природы

В чем принципиальная новизна нечисловой статистики? Для классической математической статистики характерна операция сложения. При расчете выборочных характеристик распределения (выборочное среднее арифметическое, выборочная дисперсия и др.), в регрессионном анализе и других областях этой научной дисциплины постоянно используются суммы. Математический аппарат - законы больших чисел, Центральная предельная теорема и другие теоремы - нацелены на изучение сумм. В нечисловой же статистике нельзя использовать операцию сложения, поскольку элементы выборки лежат в пространствах, где нет операции сложения. Методы обработки нечисловых данных основаны на принципиально ином математическом аппарате - на применении различных расстояний в пространствах объектов нечисловой природы.

Кратко рассмотрим несколько идей, развиваемых в статистике объектов нечисловой природы для данных, лежащих в пространствах произвольного вида. Решаются классические задачи описания данных, оценивания, проверки гипотез - но для неклассических данных, а потому неклассическими методами.

Первой обсудим проблему определения средних величин. В рамках репрезентативной теории измерений удается указать вид средних величин, соответствующих тем или иным шкалам измерения [35]. В классической математической статистике средние величины вводят с помощью операций сложения (выборочное среднее арифметическое, математическое ожидание) или упорядочения (выборочная и теоретическая медианы). В пространствах произвольной природы средние значения нельзя определить с помощью операций сложения или упорядочения. Теоретические и эмпирические средние приходится вводить как решения экстремальных задач. Для теоретического среднего это - задача минимизации математического ожидания (в классическом смысле) расстояния от случайного элемента со значениями в рассматриваемом пространстве до фиксированной точки этого пространства (минимизируется указанная функция от этой точки). Для эмпирического среднего математическое ожидание берется по эмпирическому распределению, т.е. берется сумма расстояний от некоторой точки до элементов выборки и затем минимизируется по этой точке. При этом как эмпирическое, так и теоретическое средние как решения экстремальных задач могут быть не единственным элементом пространства, а состоять из множества таких элементов, которое может оказаться и пустым. Тем не менее удалось сформулировать и доказать законы больших чисел для средних величин, определенных указанным образом, т.е. установить сходимость эмпирических средних к теоретическим .

Перейти на страницу: 1 2 3 4

Дополнительно

Термоиндикаторы
Роль температурных и тепловых измерений настолько велика, что в настоящее время без них не может обойтись практически ни одна область знаний, ни одна отрасль промышленности. Каждый из существующих способов измерения температуры имеет свои достоинства и недостатки, поэтому выбор того или ин ...

Порошковая металлургия и дальнейшая перспектива ее развития
Порошковой металлургией называют область техники, охватывающую совокупность методов изготовления порошков металлов и металлоподобных соединений, полуфабрикатов и изделий из них или их смесей с неметаллическими порошками без расплавления основного компонента. Из имеющихся разнообразных способов ...

Меню сайта