Оценки скорости сходимости

Теоретические оценки скорости сходимости в различных задачах математической статистики иногда формулируются в весьма абстрактном виде. Так, в 60-70-х годах была популярна задача оценки скорости сходимости распределения классической статистики омега-квадрат (Крамера-Мизеса-Смирнова). Для максимума модуля допредельной и предельной функций распределения этой статистики различные авторы доказывали, что для любого e>0 существует константа С(e) такая, что упомянутый максимум не превосходит С(e) n - w + e . Прогресс состоял в увеличении константы w. Сформулированный выше результат был доказал последовательно для w = 1/10, 1/6, 1/5, 1/4, 1/3, 1/2 и 1 (подробнее история этих исследований рассказана в § 2.3 монографии [11]).

Конечно, все эти исследования не могли дать конкретных практических рекомендаций. Однако необходимой исходной точкой является само существование предельного распределения. Представим себе, что некто, не зная, что у распределения Коши нет математического ожидания, моделирует выборочные средние арифметические наблюдений из этого распределения. Ясно, что его попытки оценить скорость сходимости выборочных средних к пределу обречены на провал.

Последовательное улучшение теоретических оценок скорости сходимости дает надежду на быструю реальную сходимость. Действительно, как показано в статье [13], предельным распределением для указанной статистики можно пользоваться уже при объеме выборки, равном 4.

Дополнительно

Высокопроизводительная, экономичная и безопасная работа технологических агрегатов металлургической промышленности
Высокопроизводительная, экономичная и безопасная работа технологических агрегатов металлургической промышленности требует применения современных методов и средств измерения величин, характеризующих ход производственного процесса и состояние оборудования. Автоматический контроль является логически ...

Достижения генной инженерии и биотехнологии
В своей работе я раскрываю тему достижений генной инженерии и биотехнологии. Возможности, открываемые генетической инженерией перед че­ловечеством как в области фундаментальной науки, так и во мно­гих других областях, весьма велики и нередко даже революционны. Так, она позволяет осуществлять инду ...

Меню сайта