Нейронные сети Хопфилда
НС Хопфилда (НСХ) является однослойной и полносвязной (связи нейронов на самих себя отсутствуют), её выходы связаны со входами. В отличие от МНС, НСХ является релаксационной – т.е. будучи установленной в начальное состояние, функционирует до тех пор, пока не достигнет стабильного состояния, которое и будет являться её выходным значением. НСХ применяются в качестве ассоциативной памяти и для решения оптимизационных задач. В первом случае НСХ обучается без учителя (например, по правилу Хебба), во втором случае веса между нейронами изначально кодируют решаемую задачу. НСХ бывают синхронными, когда одновременно пересчитываются все нейроны и асинхронными, когда пересчитывается случайно выбранный нейрон. Для исследования динамики функционирования НСХ используются методы Ляпунова. Показано [1], что асинхронная НСХ всегда сходится к устойчивым точкам, а аттракторами синхронной НСХ являются устойчивые стационарные точки и предельные циклы длины два. Таким образом НСХ из начального состояния сходится к ближайшему локальному минимуму энергии сети, состояние нейронов в котором и будет восстановленным образом для задач распознавания, и решением – для оптимизационных задач. Для поиска глобального минимума применительно к оптимизационным задачам используют стохастические модификации НСХ [1].
Применение НСХ в качестве ассоциативной памяти позволяет точно восстанавливать образы, которым сеть обучена, при подаче на вход искажённого образа. При этом сеть “вспомнит” наиболее близкий (в смысле локального минимума энергии) образ, и таким образом распознает его. Такое функционирование так же можно представить как последовательное применение автоассоциативной памяти, описанной выше. В отличие от автоассоциативной памяти НСХ идеально точно восстановит образ. Для избежания интерференционных минимумов и повышения ёмкости сети используют различные методы [1,13]. В работе [13] описано применение НСХ, где распознаваемое изображение лица сначала подавалось на НСХ, выход которой затем сравнивался с хранимыми изображениями. Отмечено, что предварительная обработка входного изображения при помощи НСХ существенно повышает точность распознавания.
Применение НСХ в качестве оптимизационного метода для восстановления пространственной формы лица по двумерному полутоновому изображению (а так же для детектирования граней) описано в [14]. Здесь используется вариация НСХ – ячеистая нейронная сеть (ЯНС), в которой нейроны связаны только с ближайшими соседями из двумерной области. Матрица связей одинакова для всех нейронов и определяется характером задачи. Отмечаются хорошие результаты восстановления трёхмерной формы (в частности для изображений лиц) и высокая скорость работы.
Дополнительно
Эволюция энергетических процессов у эубактерий
В главах 11 и 12 были
обсуждены проблемы возникновения первичной клетки из гипотетической протоклетки
и последующего пути прогрессивной эволюции первичной клетки. Как было
обнаружено в 70-х гг., на раннем этапе этого пути могло произойти выделение
трех основных ветвей, каждая из которых самостояте ...
Система автоматического регулирования
Современная теория автоматического регулирования является
основной частью теории управления. Система автоматического регулирования
состоит из регулируемого объекта и элементов управления, которые воздействуют
на объект при изменении одной или нескольких регулируемых переменных. Под
влиянием входны ...