Металлокерамические подшипники:

Металлокерамические материалы являются в ряде случаев эффективными заменителями антифрикционных подшипниковых сплавов - бронзы, латуни и др.

В подшипниках скольжения находят применение следующие металлокерамические материалы: бронзографит, пористое железо и пористый железографит.

Одно из основных преимуществ металлокерамических вкладышей заключается в наличии в них пор, способствующих образованию устойчивой масляной пленки в подшипнике. В результате предварительной пропитки вкладыша (втулки) в нагретом масле большое количество капилляров вкладыша заполняется маслом и благодаря этому трущаяся поверхность обеспечивается смазочной пленкой в течение длительного времени.

Различные режимы работы требуют применения металлокерамических подшипников с различной степенью пористости. Для тяжелых условий работы (ударные нагрузки, высокие скорости), при которых нужна повышенная механическая прочность опоры, следует применять подшипники из мелких порошков (обладающие более высокими механическими и антифрикционными качествами, чем подшипники из крупных порошков) с низкой пористостью. Для средних нагрузок рекомендуется пористость 22 - 28%. Для работы без дополнительной смазки желательно применение подшипников из крупных порошков пористостью 25 - 35%. Чем больше пластичность и чем меньше пористость спеченного порошкового металла, тем больше он приближается по свойствам к компактному металлу.

При нормальной температуре (200С), спокойной нагрузке и достаточной смазке (примерно 3 капли в минуту на 1 см кв поверхности трения) железографитовые подшипники пористостью 22 - 28% удовлетворительно работают при следующих режимах:

V(м/сек)

0,5

1

1,5

2

2,5

3

3,5

4

P(кг/см кв)

70

65

60

55

55

35

18

8

Для подшипников пористостью 15 - 20% допускаемые удельные нагрузки могут быть повышены против указанных на 20 - 30%. При работе металлокерамических подшипников со скоростью v< 1 м/сек применяется консистентная смазка, при больших скоростях – жидкие минеральные масла. Подводить масло рекомендуется через такие же смазочные канавки, как у подшипников из литых металлов.

Для тонкостенных втулок с повышенной пористостью применяется также подпитка подшипника через наружную стенку.

При повышенных температурах ( до 300 С железографитовые подшипники могут работать при малых скоростях (v < 0,1 м/сек ) с графитовой смазкой. Самосмазываемость пористых железографитовых подшипников относится только к малым нагрузкам и скоростям, когда pv < 1 кГм/см2 сек.

Пористые железографитовые подшипники изготавливают преимущественно в виде цилиндрических втулок и поставляют в готовом к установке виде. При назначении толщины стенки исходят из условий прочности и способности материала впитывать масло.

В общем случае толщина стенки может быть ориентировочно принята равной 0,2d (d – диаметр вала). Самосмазывающиеся подшипники лучше изготавливать относительно тонкостенными. При обычной смазке толщина стенки может быть принята примерно равной 0,1d (если выполнены условия прочности), но не менее 2 мм. При изготовлении металлокерамических вкладышей допуски на внутренний и наружный диаметры выдерживаются в пределах 3-го, а иногда и 2-го классов точности. Железографитовые втулки запрессовываются в корпус по прессовым посадкам. Для обеспечения зазора в подшипнике необходимо учитывать, что уменьшение внутреннего диаметра втулки равно примерно 0,7 - 1 величины натяга. Зазор в металлокерамическом подшипнике ориентировочно принимается равным 0,001 - 0,002 диаметра вала. Доводка внутреннего диаметра до требуемого размера может быть произведена калибровкой, а также протягиванием и развертыванием.

Перейти на страницу: 1 2

Дополнительно

Планета солнечной системы Уран
Даже в XVIII в. планетная система была известна только до Сатурна. Но уже тогда предполагали, что Сатурном список планет не оканчивается, что существуют еще более далекие планеты, которые невооруженным глазом увидеть нельзя. Это мнение блестяще подтвердилось, когда в 1781 г. знаменитый английский ...

Численная модель эволюции плавающих на сферической мантии и взаимодействующих континентов
С развитием методов численного моделирования глобальных геодинамических процессов появилась возможность исследовать механизм дрейфа континентов с периодическим объединением их в суперконтиненты типа Пангеи. В предыдущих работах авторов разработан метод численного решения системы уравнений переноса ...

Меню сайта