Симметрия и процесс познания

Связь между симметрией пространства и законами сохранения установила немецкий математик Эмми Нётер (1882—1935). Она сформулировала и доказала фундаментальную теорему математической физики, названную ее именем, из которой следует, что из однородности пространства и времени вытекают законы сохранения соответственно импульса и энергии, и из изотропности пространства — закон сохранения момента импульса.

Выявление различных симметрий в природе, а иногда и постулирование их стало одним из методов теоретического исследования свойств микро-, макро- и мегамира. Возросла в связи с этим роль весьма сложного и абстрактного математического аппарата — теории групп — наиболее адекватного и точного языка для описания симметрии. Теория групп — одно из основных направлений современной математики. Значительный вклад в ее развитие внес французский математик Эварист Галуа (1811— 1832), жизнь которого рано оборвалась: в возрасте 21 года он был убит на дуэли.

С помощью теории групп русский минералог и кристаллограф Е.С. Федоров (1853—1919) решил задачу классификации правильных пространственных систем точек — одну из основных задач кристаллографии. Это исторически первый случай применения теории групп непосредственно в естествознании.

Существенное ограничение об однородном и изотропном пространственном распределении материи во Вселенной, налагаемое на уравнения общей теории материи и составляющее основу космологического принципа, позволило А.А-Фридману (1888—1925) предсказать расширение Вселенной.

Анализируя роль принципов инвариантности современный американский физик-теоретик Э. Вигнер (р. 1902), лауреат Нобелевской премии 1963 г., показавший эффективность применения теории групп в квантовой механике, выделил ряд ступеней в познании, поднимаясь на которые мы глубже и дальше обозреваем природу, лучше ее понимаем. Вначале в хаосе повседневных фактов человек замечает некоторые эмпирические закономерности. Затем, выделяя общие свойства природных явлений и анализируя их связи, он формулирует математические законы природы, учитывая при этом начальные условия, которые могут иметь любой, даже случайный характер. Например, в классической механике в качестве начальных условий могут выступать координаты и скорость тела в некоторый начальный момент времени. Наконец, синтезируя уже известные законы, находят ряд принципов, позволяющих дедуктивным путем определить уже известные и пока неизвестные утверждения, предсказывающие те или иные физические явления и процессы.

Функция, которую несут принципы симметрии, по утверждению Э. Вигнера, состоит в наделении структурой законов природы или установлении между ними внутренней связи, так как законы природы устанавливают структуру или взаимосвязь в мире явлений. Так создаются теории, охватывающие широкий круг физических явлений и процессов. Следующая ступень — анализ самих принципов границ или условий и выявление тех, при которых они выполняются.

Идею выявления основополагающих принципов и их последовательное применение при описании и объяснении природных явлений впервые предложил и реализовал с применением математического аппарата Исаак Ньютон еще в начале развития классической физики и задолго до появления современных представлений об инвариантности и симметрии. В своем труде "Оптика" он писал:

Вывести из явлений два или три общих принципа движения и затем изложить, как из этих ясных принципов вытекают свойства и действия всех вещественных предметов, вот что было бы очень большим шагом в философии, хотя причины этих принципов и не были еще открыты.

По своему содержанию и месту в теории познания такие принципы носят аксиоматический характер.

Дополнительно

Численная модель эволюции плавающих на сферической мантии и взаимодействующих континентов
С развитием методов численного моделирования глобальных геодинамических процессов появилась возможность исследовать механизм дрейфа континентов с периодическим объединением их в суперконтиненты типа Пангеи. В предыдущих работах авторов разработан метод численного решения системы уравнений переноса ...

Естественно-научные концепции развития микроэлектронных и лазерных технологий
Электроника - наука о взаимодействии электронов с электромагнитными полями и о методах создания электронных приборов и устройств (вакуумных, газоразрядных, полупроводниковых), используемых для передачи, обработки и хранения информации. Возникла она в начале ХХ века. На ее основе были созданы элект ...

Меню сайта