Как устроена звезда и как она живёт

Звёзды не останутся вечно такими же, какими мы их видим сейчас. Во Вселенной постоянно рождаются новые звёзды, а старые умирают. Чтобы понять, как эволюционирует звезда, как меняются с течением времени её внешние параметры – размер, светимость, масса, необходимо проанализировать процессы, протекающие в недрах звезды. А для этого надо знать, как устроены эти недра, каковы их химический состав, температура, плотность, давление. Но наблюдениям доступны лишь внешние слои звёзд – их атмосферы. Проникнуть в глубь даже ближайшей звезды – Солнца – мы не можем. Приходится прибегать к косвенным методам: расчётам, компьютерному моделированию. При этом пользуются данными о внешних слоях, известными законами физики и механики, общими как для Земли, так и для звёздного мира.

Условия в недрах звёзд значительно отличаются от условий в земных лабораториях, но элементарные частицы – электроны, протоны, нейтроны – там те же, что и на Земле. Звёзды состоят из тех же химических элементов, что и наша планета. Поэтому к ним можно применять значения, полученные в лабораториях.

Наблюдения показывают, что большинство звёзд устойчивы, т.е. они заметно не расширяются и не сжимаются в течение длительных промежутков времени. Как устойчивое тело звезда может существовать только в том случае, если все действующие на её вещество внутренние силы уравновешиваются. Какие же это силы?

Звезда – раскалённый газовой шар, а основным свойством газа является стремление расшириться и занять любой предоставленный ему объём. Это стремление вызвано давление газа и определяется его температурой и плотностью. В каждой точке внутри звезды действует сила давления газа, которая старается расширить звезду. Но в каждой точке ей противодействует другая сила – сила тяжести вышележащих слоев, пытающаяся сжать звезду. Однако ни расширения, ни сжатия не происходит, звезда устойчива. Это означает, что обе силы уравновешивают друг друга. А так как с глубиной вес вышележащих слоёв увеличивается, то давление, а, следовательно, и температура возрастают к центру звезды.

Звезда излучает энергию, вырабатываемую в её недрах. Температура в звезде распределена так, что в любом слое в каждый момент времени энергия, получаемая от нижележащего слоя, равняется энергии, отдаваемой слою вышележащему. Сколько энергии образуется в центре звезды, столько же должно излучаться её поверхностью, иначе равновесие нарушится. Таким образом, к давлению газа добавляется ещё и давление излучения.

Лучи, испускаемые звездой, получают свою в недрах, где располагается её источник, и продвигаются через всю толщу звезды наружу, оказывая давление на внешние слои. Если бы звёздное вещество было прозрачным, то продвижение это осуществлялось бы почти мгновенно, со скоростью света. Но оно непрозрачно и тормозит прохождение излучения. Световые лучи поглощаются атомами и вновь испускаются уже в других направлениях. Путь каждого луча сложен и напоминает запутанную зигзагообразную кривую. Иногда он «блуждает» многие тысячи лет, прежде чем выйдет на поверхность и покинет звезду.

Излучение, покидающее поверхность звезды, качественно (но не количественно) отличается от излучения, рождающегося в источнике звёздной энергии. По мере движения наружу длина волны света увеличивается. Поверхность Солнца, например, излучает в основном световые и инфракрасные лучи, а в его недрах возникает коротковолновое рентгеновское и гамма-излучение. Давление излучения для Солнца и подобных ему звёзд составляет лишь очень малую долю от давления газа, но для гигантских звёзд оно значительно.

Оценки температуры и плотности в недрах звёзд получают теоретическим путём, исходя из известной массы звезды и мощности её излучения, на основании газовых законов физики и закона всемирного тяготения. Определённые таким образом температуры в центральных областях звёзд составляют от 10 млн. градусов для звёзд легче Солнца до 30 млн. градусов для гигантских звёзд. Температура в центре Солнца – около 15 млн. градусов.

Перейти на страницу: 1 2

Дополнительно

Высокопроизводительная, экономичная и безопасная работа технологических агрегатов металлургической промышленности
Высокопроизводительная, экономичная и безопасная работа технологических агрегатов металлургической промышленности требует применения современных методов и средств измерения величин, характеризующих ход производственного процесса и состояние оборудования. Автоматический контроль является логически ...

Принципы промышленной первичной переработки нефти
...

Меню сайта