Сверхновые звезды.

Сверхновые звезды – одно из самых грандиозных космических явлений. Коротко говоря, сверхновая – это настоящий взрыв звезды, когда большая часть ее массы (а иногда и вся) разлетается со скоростью до 10000 км/с, а остаток сжимается (коллапсирует) в сверхплотную нейтронную звезду или в черную дыру. Сверхновые играют важную роль в эволюции звезд. Они являются финалом жизни звезд массой более 8-10 солнечных, рождая нейтронные звезды и черные дыры и обогащая межзвездную среду тяжелыми химическими элементами. Все элементы тяжелее железа образовались в результате взаимодействия ядер более легких элементов и элементарных частиц при взрывах массивных звезд. Не здесь ли кроется разгадка извечной тяги человечества к звездам? Ведь в мельчайшей клеточке живой материи есть атомы железа, синтезированные при гибели какой-нибудь массивной звезды. И в этом смысле люди сродни снеговику из сказки Андерсена: он испытывал странную любовь к жаркой печке, потому что каркасом ему послужила кочерга…

По наблюдаемым характеристикам сверхновые принято разделять на две большие группы – сверхновые 1-го и 2-го типа. В спектрах сверхновых 1-го типа нет линий водорода; зависимость их блеска от времени (так называемая кривая блеска) примерно одинакова у всех звезд, как и светимость в максимуме блеска. Сверхновые 2-го типа, напротив, имеют богатый водородными линиями оптический спектр; формы их кривых блеска весьма разнообразны; блеск в максимуме сильно различается у разных сверхновых.

Ученые заметили, что в эллиптических галактиках (т.е. галактиках без спиральной структуры, с очень низким темпом звездообразования, состоящих в основном из маломассивных красных звезд) вспыхивают только сверхновые 1-го типа. В спиральных же галактиках, к числу которых принадлежит и наша Галактика - Млечный Путь, встречаются оба типа сверхновых. При этом представители 2-го типа концентрируются к спиральным рукавам, где идет активный процесс звездообразования и много молодых массивных звезд. Эти особенности наводят на мысль о различной природе двух типов сверхновых.

Сейчас надежно установлено, что при взрыве любой сверхновой освобождается огромное количество энергии – порядка 1046 Дж. Основная энергия взрыва уносится не фотонами, а нейтрино – быстрыми частицами с очень малой или вообще нулевой массой покоя. Нейтрино чрезвычайно слабо взаимодействуют с веществом, и для них недра звезды вполне прозрачны.

Законченной теории взрыва сверхновых с формированием компактного остатка и сбросом внешней оболочки пока не создано ввиду крайней сложности учета всех протекающих при этом физических процессов. Однако все данные говорят о том, что сверхновые 2-го типа вспыхивают в результате коллапса ядер массивных звёзд. На разных этапах жизни звезды в ядре происходили термоядерные реакции, при которых сначала водород превращается в гелий, затем гелий в углерод и так далее до образования элементов «железного пика» – железа, кобальта и никеля. Атомные ядра этих элементов имеют максимальную энергию связи в расчёте на одну частицу. Ясно, что присоединение новых частиц к атомному ядру, например, железа будет требовать значительных затрат энергии, а потому термоядерное горение и «останавливается» на элементах железного пика.

Что же заставляет центральные части звезды терять устойчивость и коллапсировать, как только железное ядро станет достаточно массивным (около 1,5 массы Солнца)? В настоящее время известны два основных фактора, приводящих к потере устойчивости и коллапсу. Во-первых, это «развал» ядер железа на 13 альфа-частиц (ядер гелия) с поглощением фотонов – так называемая фотодиссоциация железа. Во-вторых, нейтронизация вещества – захват электронов протонами с образованием нейтронов. Оба процесса становятся возможными при больших плотностях (свыше 1 т/см3), устанавливающихся в центре звезды в конце эволюции, и оба они эффективно снижают «упругость» вещества, которая фактически и противостоит сдавливающему действию сил тяготения. Как следствие, ядро теряет устойчивость и сжимается. При этом в ходе нейтронизации вещества выделяется большое количество нейтрино, уносящих основную энергию, запасённую в коллапсирующем ядре.

В отличие от процесса катастрофического коллапса ядра, теоретически разработанного достаточно детально, сброс оболочки звезды (собственно взрыв) не так-то просто объяснить. Скорее всего существенную роль в этом процессе играют нейтрино.

Перейти на страницу: 1 2

Дополнительно

Термоиндикаторы
Роль температурных и тепловых измерений настолько велика, что в настоящее время без них не может обойтись практически ни одна область знаний, ни одна отрасль промышленности. Каждый из существующих способов измерения температуры имеет свои достоинства и недостатки, поэтому выбор того или ин ...

Современная судовая газотурбинная установка
Современная судовая газотурбинная установка (ГТУ) успешно конкурирует с аналогичными по назначению паротурбин­ными и дизельными. От последних она выгодно отличается ком­пактностью и малой удельной массой, маневренностью и высокой ремонтопригодностью, лучшей приспособленностью к автоматиза­ции ...

Меню сайта