Лазерная диагностика

Дифракционные явления в оптике в обыденном представлении негативны, как причина ограниченности возможностей оптических систем, в том числе лазерных метрологических, навигационных и гироскопических приборов. Известны и полезные практические применения классической дифракции света, например, для измерения размеров отверстий, диаметров нитей и числа их в скрутке, показателей преломления и ряда других. Однако, есть важный аспект этих явлений - дифракционное обратное рассеяние (ДОР) на локальных неоднородностях в оптическом резонаторе, придающий им особый статус. Высокая чувствительность фазы результирующей ДОР к смещению выделенной локальной неоднородности (ВЛН) по оси резонатора лазера делает дифракцию средством управления характеристиками генерации как линейного, так и кольцевого лазера, а также тонким измерительным инструментом в области физических параметров. Укажем, например, возможность реализации внутрирезонаторного доплеровского измерителя скорости потока на основе ДОР, прямого измерения относительного превышения накачки над порогом и самих значений потерь резонатора и усиления активной среды [1] и др. В данной работе приведен пример достаточно простого определения на основе ДОР некоторых физических параметров, измерение которых традиционными способами считается весьма трудоемким, например: коэффициента конвективной теплоотдачи, величины поляризационного оптического дихроизма поглощения - по термической реакции ВЛН, определяющей ДОР в резонаторе лазера, на поглощаемую ею энергию оптического излучения.

Запишем поля бегущих встречных волн в резонаторе лазера с частотой генерации w в виде E2,1(z, t) = E2,1(t)exp{- j(w t ± kz + F2,1(t))}, где E1,2(t), F1,2(t) - медленные вещественные амплитуды и фазы волн, обозначим F(t)= F1(t) - F2(t) - разность фаз. В линейном лазере Fє Const(t), т.к. встречные волны жестко связаны отражением на зеркалах, а в кольцевом лазере F(t) зависит от присутствующих в резонаторе локальных неоднородностей (в т.ч. диафрагм), создающих кроме дополнительных потерь каждой из волн, также линейную связь встречных волн вследствие их обратного рассеяния. Обозначим M, Q - амплитуду и фазу результирующего (эффективного) комплексного коэффициента связи встречных волн на всех неоднородностях резонатора, создающих обратное рассеяние, m, u - амплитуду и фазу парциального коэффициента ДОР от одной выделенной локальной неоднородности. Характер зависимости фазы результирующего коэффициента связи Q от u (фазы ДОР на ВЛН) определяется соотношением амплитуд M, m. При m << M фаза Q мало чувствительна к изменениям u, однако, при m @ M фаза Q практически точно "следит" за u, а в промежуточных случаях Q следует u только в среднем за период (D Q = 2p в интервале D u = 2p). При использовании в качестве ВЛН одномерной диафрагмы (ОД) в плоскости z=z0 в виде тонкой отражающей металлической нити u = - 2kz0. Следовательно, в случае вклада ДОР от ОД, преобладающего над всеми прочими источниками обратного рассеяния, перемещение диафрагмы по оси z резонатора z0(t) приводит к управлению фазой Q результирующего обратного рассеяния через фазу u ДОР от ОД Q (t) = u (t) = - 2kz0(t).

Из укороченных уравнений для E1,2(t), F1,2(t), усредненных по объему резонатора с локальными неоднородностями, запишем e - потери за проход в резонаторе, I - безразмерную интенсивность одномодовой генерации и F - разность фаз встречных волн, не ограничиваясь слабым полем, но без учета пространственной модуляции заселенностей в поляризуемости активной среды и при I = (I1 + I2) >> Ѕ I1 - I2Ѕ в виде e = e 0 + m - M Cos(F + Q ); I = (c /e )2 - (1 + f2); F(t) = - Q (t) - Б (t); c , e 0 - усиление в активной среде и собственные потери резонатора без диафрагмы за проход, m - ординарные дифракционные потери, вносимые диафрагмой, f - безразмерная отстройка частоты w от центра линии активной среды, Б(t) - известная функция времени [2], зависящая от расщепления встречных волн и полосы захвата. В дифракционной картине от ОД - цилиндра радиуса r , в интерференционной составляющей интенсивности дальней зоны наблюдения в направлении j вне резонатора можно записать разность фаз дифрагированных встречных волн в геометрооптическом приближении F (t) = 2k [z0(t) - r 21/2 Sin(j /2 - p /2)] - F(t).В линейном лазере (F = Const(t)) модуляция интенсивности I(t), обусловленная e (t), как и Ф(t) в дифракционной картине, однозначно характеризуют перемещение диафрагмы z0(t) по оси z.

Перейти на страницу: 1 2

Дополнительно

Планета солнечной системы Уран
Даже в XVIII в. планетная система была известна только до Сатурна. Но уже тогда предполагали, что Сатурном список планет не оканчивается, что существуют еще более далекие планеты, которые невооруженным глазом увидеть нельзя. Это мнение блестяще подтвердилось, когда в 1781 г. знаменитый английский ...

Эволюция биологических механизмов запасения энергии
В основу эволюционной концепции биоэнергетики положена гипотеза о том, что на заре становления жизни адениновая часть АДФ и АДФ-со-держащих коферментов использовалась в качестве антенны, улавливающей ультрафиолетовый свет, который в те времена достигал поверхности океана. Поглощение ультрафиолета ...

Меню сайта