Роль метилирования ДНК в канцерогенезе
За последние 15-20 лет было установлено, что паттерн метилирования в неопластических клетках значительно изменяется по сравнению с нормальными клетками, причем тотальное деметилирование генома сопровождается увеличением активности метилтрансферазы и локальным гиперметилированием CpG-островков. Во всех, без исключения, исследованных неоплазиях наблюдается подобный дисбаланс метилирования. В свете описанных выше функций метилирования в нормальных клетках, очевидно, что эти нарушения могут изменять структуру хроматина и функции ДНК, внося тем самым значительный вклад в создание генетической и фенотипической нестабильности опухолевой клетки. 1. Тотальное гипометилирование генома. Было обнаружено, что одним из первичных нарушений метилирования ДНК в неопластических клетках, является тотальное гипометилирование генома. Уменьшение количества метильных групп является одним из ранних, зачастую еще до появления сформированной опухоли, событием в клеточной трансформации. Напрямую роль гипометилирования ДНК в процессе клеточной трансформации была доказана на основании данных о том, что содержание грызунов на безметиониновой диете, ведущей к дефициту доноров метильных групп, вызывает гипометилирование ДНК и образование опухолей печени (Pogribny I.P., et al, 1995). Несмотря на явную ассоциацию гипометилирования ДНК с процессом образования опухолей, причины и конкретные механизмы, обуславливающие его канцерогенный эффект, до сих пор остаются неясными. Есть данные, что гипометилирование может затрагивать определенные онкогены, такие как К-ras при раке легкого и кишечника у человека. Эти локальные ген-специфические изменения возникают на ранних стадиях канцерогенеза и обнаружены, в частности, в доброкачественных полипах, которые являются предшественниками карциномы кишечника (Baylin S.B., et al, 1998; Лихтенштейн А.В. & Киселева Н.П., 2001). Тем не менее, спектр генов, активируемых в опухолях в результате гипометилирования генома, ограничен. Вероятно, это объясняется тем, что гипометилирование затрагивает рассеянные CpG динуклеотиды. CpG-островки не могут быть объектами деметилирования. Исключение составляют импринтированные гены и гены на инактивированной Х-хромосоме у самок. Таким образом, деметилирование может затрагивать группы тканеспецифичных генов, содержащих в регуляторных областях одиночные CpG динуклеотиды. Нарушение импринтинга в результате деметилирования и его роль в канцерогенезе были доказаны при изучении опухоли Вильмса (Jirtl R.L., 1999). Опухоль этого типа развивается у детей в раннем возрасте из метанефрических бластных клеток. Существуют спорадическая и наследственная формы заболевания (RyanG., et al , 1995). Было обнаружено, что в 70% случаев в опухолях Вильмса имеет место аберрантное деметилирование материнского аллеля и биаллельная экспрессия гена инсулинподобного фактора роста IGF2. Как известно, при сверхэкспрессии IGF2 проявляет свойства онкогена. Биаллельная экспрессия IGF2 часто наблюдается в фенотипически нормальных тканях окружающих опухоль, т.е. является ранним событием при возникновении опухоли Вильмса. Нарушение импринтинга IGF2 наблюдается более чем в 20 различных типах опухолей (Jirtl R.L. , 1999). Как уже упоминалось выше, тотальное гипометилирование генома может, изменяя структуру хроматина и переводя его в активное состояние, косвенно влиять на экспрессию генов. Так, было показано, что деметилирование генома нормальных клеток под воздействием 5-азацитидина ведет к трансформации некоторых клеточных культур и нарушению процесса расхождения хромосом во время митоза (Baylin S.B., et al, 1998; Лихтенштейн А.В. & Киселева Н.П., 2001). Еще одним следствием тотального гипометилирования и, возможно, наиболее вероятным, является возникающая в результате нарушения паттерна метилирования общая нестабильность генома. Так гипометилирование ДНК в эмбриональных клетках мыши, нокаутированных по гену dnmt1, увеличивало частоту реарранжировок эндогенных ретровирусов и паразитических последовательностей, частоту образования делеций и транслокаций некоторых уникальных генов, т.е. являлось причиной хромосомных аномалий и последующего летального исхода (Chen R.Z., et al, 1998). Однако, для опухолевых клеток пока отсутствуют данные, которые подтвердили бы, что перечисленные нарушения, всегда присутствующие в них, являются прямым следствием тотального гипометилирования. 2. Локальное гиперметилирование.
Локальное гиперметилирование распространяется на небольшую часть CpG динуклеотидов (~20%), которые входят в состав CpG-островков. CpG-островки, за известными исключениями, всегда неметилированы в нормальных клетках. Аберрантное гиперметилирование CpG-островков является особенностью иммортализованных и трансформированных клеток и связано с инактивацией определенных генов супрессоров опухолевого роста y человека (Toyota V. & Issa J.-P.J., 1999). Механизм локального гиперметилирования не вполне ясен. По-видимому, важную роль в этом процессе играет повышение метилтрансферазной активности, тем более что оно является характерным свойством опухолевых клеток (Robertson K.D., et al, 1999). При исследовании некоторых клеточных культур было показано, что повышение ДНК-метилтрансферазной активности зачастую предшествует злокачественной трансформации. Так, трансфекция клонированного гена человеческой Dnmt1 в иммортализованные фибробласты человека приводит к аберрантному метилированию CpG-островков в промоторных зонах ряда генов, в том числе генов E-cad (E-cadherin) и HIC1 (hypermethylated in cancer). В тоже время, CpG-островки, ассоциированные с другими генами (например, с геном-супрессором p16INK4A), не меняют статус метилирования, несмотря на постоянную экспрессию Dnmt1 (Vertino P.M., et al, 1996). Таким образом, очевидно, что повышение активности Dnmt1 играет определенную роль в аберрантном метилировании CpG-островков. Однако простым повышением уровня экспрессии нельзя объяснить появление у фермента способности к метилированию de novo. По-видимому, в трансформированных и опухолевых клетках нарушен механизм защиты CpG-островков от метилирования. Кроме того, недавно было показано, что Dnmt1 является мишенью действия онкобелков Ras и Fos, то есть активность фермента регулируется внутриклеточными путями, передающими митогенные сигналы (Лихтенштейн А.В. & Киселева Н.П., 2001). Гиперметилирование CpG-островков приводит к стабильной инактивации прилежащего гена, то есть феномену MAGI (methylation-associated gene inactivation). Это происходит в результате возникновения стерических препятствий к связыванию транскрипционных факторов или гетерохроматинизации, опосредованной метилцитозин-связывающими белками MBD (Robertson K.D. & Jones P.A., 2000). Если прилежащим геном окажется ген домашнего хозяйства, то его инактивация будет летальна для клетки, но не будет иметь особых последствий для организма. Подавление экспрессии какого-либо из тканеспецифических генов нанесет определенный ущерб дифференциальному фенотипу клетки, не оказывая влияния на общую жизнеспособность. В то же время, инактивация гена супрессора опухолевого роста или гена репарации может создать условия для неконтролируемой пролиферации (Baylin S.B., et al, 1998; Лихтенштейн А.В. & Киселева Н.П., 2001). Аберрантное метилирование CpG-островков является ранним событием в процессе возникновения опухоли. Например, гиперметилирование промоторного региона гена супрессора опухолевого роста p16INK4A при плоскоклеточном раке легкого было обнаружено уже в гиперплазии (Baylin S.B., et al, 1998). Ген ретинобластомы (Rb1) - первый классический ген супрессор опухолевого роста, в отношении которого был установлен феномен MAGI. Важность этого гена определяется тем, что, как полагают, все (или почти все) антипролиферативные сигналы реализуются в клетке опосредованно, через белок Rb или родственные белки (Hanahan D. & Weinberg R.A., 2000). Белок Rb синтезируется на протяжении всего клеточного цикла и почти все время присутствует в неполностью фосфорилированном виде. Такая форма белка способна связывать факторы, отвечающие за переход клетки из фазы G1 в фазу S, т.е. принимает участие в негативной регуляции клеточного цикла (Kouzarides T., 1995). Когда белок Rb фосфорилируется с помощью специфичных для клеточного цикла киназ (например, циклином D1/CDK4), связанные с ним эффекторы высвобождаются и запускают переход в S-фазу. Сама по себе, ретинобластома представляет собой опухоль, развивающуюся из эмбриональной сетчатки и наследуемую в большинстве случаев по аутосомно-доминантному типу с 90%-ной пенетрантностью. Кроме семейных случаев возникновения ретинобластомы описаны и спорадические случаи (Киселев Ф.Л., 1998). Гиперметилирование CpG-островка промотора гена Rb1 имеет место только при спорадической (унилатеральной) ретинобластоме в 10-15% случаев (Hanahan D. & Weinberg R.A., 2000). К настоящему времени известно значительное число генов супрессоров опухолевого роста, инактивированных в различных опухолях путем гипеметилирования CpG-островков, локализованных в их регуляторных областях. Среди них: гены Rb1, р53, VHL, BRCA1, MLH1 и другие (Baylin S.B., et al, 1998; Лихтенштейн А.В. & Киселева Н.П., 2001; Robertson K.D. & Jones P.A., 2000; Hanahan D. & Weinberg R.A., 2000; Киселев Ф.Л., 1998). 3. 5-МеС как эндогенный мутаген.
Дополнительно
Технология выращивания кукурузы на зерно
Кукуруза — одна из основных
культур современного мирового земледелия. Это культура разностороннего
использования и высокой урожайности. На продовольствие в странах мира
используется около 20% зерна кукурузы, на технические цели — 15 — 20% и
примерно две трети — на корм.
Кукурузу выращивают во ...
Численная модель эволюции плавающих на сферической мантии и взаимодействующих континентов
С развитием методов
численного моделирования глобальных геодинамических процессов появилась
возможность исследовать механизм дрейфа континентов с периодическим
объединением их в суперконтиненты типа Пангеи. В предыдущих работах авторов
разработан метод численного решения системы уравнений переноса ...