Вращающиеся и заряженные черные дыры

Рис. 4. “Вид сверху” по оси вращения на вращающуюся черную дыру. Малые окружности соответствуют положениям фронта волны излучения через малый промежуток времени после испускания волны в точках /, 2, 3, 4. Эффект увлечения в эргосфере настолько велик, что никакое физическое тело не может в ней покоиться относительно удаленного наблюдателя

ла приобретают одну и ту же угловую скорость вращения, равную OMEGA=(J/M)[R2g +(J/Мс)2]-1. Эта величина получила название угловой скорости вращения черной дыры. OMEGA постоянна на поверхности черной дыры. В этом смысле вращение черной дыры напоминает вращение твердого тела. Так же как и при коллапсе невращающегося тела, возрастающее красное смещение при приближении поверхности тела к горизонту и падение по экспоненциальному закону мощности излучения, выходящего к отдаленному наблюдателю, приводят к тому, что через характерные времена порядка Rg /c перестает выходить наружу информация и образуется черная дыра. Заряженные черные дыры. Если коллапсирующее тело обладало электрическим зарядом, то возникающая черная дыра “помнит” об этом. Падение электрического заряда Q в черную дыру приводит к тому, что поток электрического поля через ее поверхность оказывается равным 4piQ в полном соответствии с теоремой Гаусса. Силовые линии электрического поля выходят из черной дыры, и вне ее имеется электрическое поле. Если черная дыра не вращается, то это поле описывается законом Кулона. Вращение заряженной черной дыры с массой М и угловым моментом J приводит к дополнительному появлению дипольного магнитного поля, причем магнитный момент оказывается равным: мю= (Q/M)J. Соответствующее точное решение уравнений Эйнштейна, обобщающее решение Керра на случай, когда черная дыра обладает электрическим зарядом, было получено в 1965 г. в работе группы американских теоретиков во главе с профессором Эзрой Ньюмапом. Как выяснилось позднее, это решение, получившее название решения Керра—Ньюмана, однозначно определяемое тремя параметрами: М - массой, J — угловым моментом и Q —электрическим зарядом, является самым общим из возможных решений, описывающих стационарную черную дыру в пустоте. Геометрические свойства керр-ньюмановской черной дыры весьма сходные с описанными выше свойствами керровской черной дыры.

Поверхность черной дыры при наличии вращения перестает иметь сферическую форму. Площадь поверхности керр-ньюмановской черной дыры равна

A = 4pi [R2g + (J/Mc)2] =4piG2с-4(2M2—Q2/G+.

+ 2Мsqrt[M2—Q2/G—J2c2/G2M2]).

При описании свойств черных дыр важную роль играет так называемая поверхностная гравитация kappa

При отсутствии вращения и заряда kappa=c4/GM=GM/R2g Эта величина хaрактеризует “напряженность” гравитационного поля на поверхности черной дыры. Электрический потенциал на поверхности черной дыры равен

Перейти на страницу: 1 2 

Дополнительно

Использование роботов на промышленных предприятиях
Рассмотрим конкретные задачи , которые роботы решают в настоящее время на промышленных предприятиях. Их можно разделить на три основных категории : - манипуляции заготовками и изделиями - обработка с помощью ...

Планета солнечной системы Уран
Даже в XVIII в. планетная система была известна только до Сатурна. Но уже тогда предполагали, что Сатурном список планет не оканчивается, что существуют еще более далекие планеты, которые невооруженным глазом увидеть нельзя. Это мнение блестяще подтвердилось, когда в 1781 г. знаменитый английский ...

Меню сайта