Черные дыры, термодинамика, информация
Дж. Бекенштейн оценил КПД этой своеобразной тепловой машины и, используя формулу Карно, получил для температуры черной дыры выражение, лишь на численный множитель порядка 1 отличающееся от хокин-говской температуры черной дыры. Если использовать приведенное выше выражение для бE и положить температуру черной дыры равной хокинговской, то соответствующее значение энтропии черной дыры оказывается равным:
Sчд=Ar/4(hG/c3)тождесвенно= Ak/4l2пл
Теорема Хокинга, позволяет записать аналог второго начала термодинамики в видег
Второй закон физики чёрных дыр
бSчд>=0.
В обоих случаях (в термодинамике и физике черных дыр) второе начало означает присущую системе в целом существенную необратимость и выделяет тем самым направление времени. В термодинамике .закон возрастания энтропии приводит к тому, что часть внутрен? ней энергии, которая не может быть превращена в работу, увеличивается со временем. Совершенно аналогично закон возрастания площади черной дыры означает, что доля внутренней энергии черной дыры, которую из нее нельзя извлечь, возрастает со временем. Как и в термодинамике, величина SЧД связана с невозможностью получить информацию о строении системы, в данном случае о внутренности черной дыры.
На первый взгляд наличие хокинговского испарения, в результате которого происходит уменьшение площади поверхности черной дыры, существенно подрывает рассматриваемую аналогию. Однако это не так. Поскольку хокинговское излучение носит тепловой характер, оно обладает энтропией SИЗЛ, причем оказывается, что всегда сумма энтропии этого излучения и энтропии черной дыры не убывает со временем. Поэтому выполняется
Обобщенный второй закон физики черных дыр
бSЧд + бSвещ>=0,
где SЧд— сумма энтропии черных дыр, в рассматриваемой системе и Sвещ — полная энтропия вещества и излучения вне черных дыр. Тот факт, что в обобщенный закон на одинаковом основании входят, казалось бы, разные по своей природе величины, еще раз указывает на их глубокое родство.
В термодинамике равновесие невозможно, если температура разных частей системы различна. Наличие состояния термодинамического равновесия и существование .температуры в термодинамике постулируются нулевым началом. В физике черных дыр справедливо аналогичное утверждение:
Поверхностная гравитация kappa стационарной черной дыры постоянна везде на горизонте событий.
Если поверхностная гравитация в разных точках поверхности черной дыры различна, то такая черная дыра нестационарна и предоставленная самой себе с течением времени приходит в стационарное состояние с постоянным к. Этот нулевой закон выполняется и для системы, состоящей из термодинамической системы и черной дыры.
Наконец, в полной аналогии с третьим законом термодинамики можно сформулировать Поверхностную гравитацию невозможно обратить в нуль посредством любого конечного числа операций.
Сформулированные законы физики черных дыр оказываются крайне полезными при рассмотрении различных явлений с участием черных дыр. Точно так же, как начала термодинамики, они позволяют изучать многие общие характеристики таких процессов, не привлекая конкретные решения сложных динамических уравнений. Черные дыры, энтропия и информация. Наличие связи тепловых свойств черных дыр с потерей информации об области пространства-времени внутри ее находится в согласии с общим информационным подходом к термодинамике, который восходит к классикам теории теплоты, был сформулирован Л. Сциллардом и развивался многими физиками и математиками. Суть этого подхода состоит в утверждении, что существует прямая связь между недостатком информации о физической системе и величиной ее энтропии.
Дополнительно
Эволюция энергетических процессов у эубактерий
В главах 11 и 12 были
обсуждены проблемы возникновения первичной клетки из гипотетической протоклетки
и последующего пути прогрессивной эволюции первичной клетки. Как было
обнаружено в 70-х гг., на раннем этапе этого пути могло произойти выделение
трех основных ветвей, каждая из которых самостояте ...
Нетрадиционные методы производства энергии
Рождение энергетики
произошло несколько миллионов лет тому назад, когда люди научились использовать
огонь. Огонь давал им тепло и свет, был источником вдохновения и оптимизма,
оружием против врагов и диких зверей, лечебным средством, помощником в
земледелии, консервантом продуктов, технологическ ...