Асимптотическая математическая статистика и практика анализа статистических данных
Как мы обычно подходим к обработке реальных данных в конкретной прикладной задаче? Первым делом строим статистическую модель. Если мы хотим перенести выводы с совокупности результатов наблюдений на более широкую совокупность, например, предсказать что-либо, то рассматриваем, как правило, вероятностно-статистическую модель. Например, традиционную модель выборки, в которой результаты наблюдений - реализации независимых (в совокупности) одинаково распределенных случайных величин. Очевидно, любая модель лишь приближенно соответствует реальности.
В частности, естественно ожидать, что распределения результатов наблюдений несколько отличаются друг от друга, а сами результаты связаны между собой, хотя и слабо. И эти ожидания во многих конкретных случаях оправдываются (в терминах конкретной прикладной ситуации см. об этом, например, в монографии [1]).
Итак, первый этап - переход от реальной ситуации к математической модели. Далее - неожиданность: на настоящем этапе своего развития математическая теория статистики зачастую не позволяет провести необходимые исследования для имеющихся объемов выборок. Более того, отдельные математики пытаются оправдать свой отрыв от практики соображениями о структуре этой теории, на первый взгляд убедительными. Неосторожная давняя фраза Б. В. Гнеденко и А. Н. Колмогорова: "Познавательная ценность теории вероятностей раскрывается только предельными теоремами" [2] взята на вооружение и более близкими к нам по времени авторами. Так, И. А. Ибрагимов и Р. З. Хасьминский пишут: "Решение неасимптотических задач оценивания, хотя и весьма важное само по себе, как правило, не может являться объектом достаточно общей математической теории. Более того, соответствующее решение часто зависит от конкретного типа распределения, объема выборки и т. д. Так, теория малых выборок из нормального закона будет отличаться от теории малых выборок из закона Пуассона" [3, с.7].
Согласно цитированным и подобным им авторам, основное содержание математической теории статистики - предельные теоремы, полученные в предположении, что объемы рассматриваемых выборок стремятся к бесконечности. Эти теоремы опираются на предельные соотношения теории вероятностей, типа Закона Больших Чисел и Центральной Предельной Теоремы. Ясно, что сами по себе подобные утверждения относятся к математике, т. е. к сфере чистой абстракции, и не могут быть непосредственно применены для анализа реальных данных. Их использование опирается на важное предположение: "При данном объеме выборки достаточно точными являются асимптотические формулы. "
Конечно, в качестве первого приближения представляется естественным воспользоваться асимптотическими формулами, не тратя сил на анализ их точности. Но это - лишь начало долгой цепи исследований. Как же обычно преодолевают разрыв между результатами асимптотической математической статистики и потребностями практики статистического анализа данных? Какие "подводные камни" подстерегают на этом пути? Обсуждению этих вопросов и посвящена настоящая статья.
Дополнительно
Есть ли жизнь на Марсе
«Есть ли жизнь на
Марсе, нет ли жизни на Марсе - науке неизвестно» - это не просто удачный
афоризм из популярной кинокомедии «Карнавальная ночь», который широко вошел в
наш разговорный язык и стал ходячей шуткой. Главное здесь в том, что эта фраза
очень долгое время отражала наш действитель ...
Биологическое время и его моделирование в квазихимическом пространстве
Методология построения теории времени естественных объектов, детально
изложена [1, 2]. В данной работе рассмотрены компоненты этой теории на примере
клеточной популяции.
...