Нейросетевые методы распознавания изображений

Выполнен обзор нейросетевых методов, используемых при распознавании изображений. Нейросетевые методы - это методы, базирующиеся на применении различных типов нейронных сетей (НС). Основные направления применения различных НС для распознавания образов и изображений:

  • применение для извлечение ключевых характеристик или признаков заданных образов,
  • классификация самих образов или уже извлечённых из них характеристик (в первом случае извлечение ключевых характеристик происходит неявно внутри сети),
  • решение оптимизационных задач.

Архитектура искусственных НС имеет некоторое сходство с естественными нейронными сетями. НС, предназначенные для решения различных задач, могут существенно различаться алгоритмами функционирования, но их главные свойства следующие [1-3].

НС состоит из элементов, называемых формальными нейронами, которые сами по себе очень просты и связаны с другими нейронами. Каждый нейрон преобразует набор сигналов, поступающих к нему на вход в выходной сигнал. Именно связи между нейронами, кодируемые весами, играют ключевую роль. Одно из преимуществ НС (а так же недостаток при реализации их на последовательной архитектуре) это то, что все элементы могут функционировать параллельно, тем самым существенно повышая эффективность решения задачи, особенно в обработке изображений. Кроме того, что НС позволяют эффективно решать многие задачи, они предоставляют мощные гибкие и универсальные механизмы обучения, что является их главным преимуществом перед другими методами [4,5] (вероятностные методы, линейные разделители, решающие деревья и т.п.). Обучение избавляет от необходимости выбирать ключевые признаки, их значимость и отношения между признаками. Но тем не менее выбор исходного представления входных данных (вектор в n-мерном пространстве, частотные характеристики, вэйвлеты и т.п.), существенно влияет на качество решения и является отдельной темой. НС обладают хорошей обобщающей способностью (лучше чем у решающих деревьев [5]), т.е. могут успешно распространять опыт, полученный на конечном обучающем наборе, на всё множество образов.

Опишем применение НС для распознавания изображений, отмечая возможности применения для распознавания человека по изображению лица.

    Дополнительно

    Лазерная система для измерения статистических характеристик пространственных квазипериодических структур
    В последние годы наблюдается интенсивное развитие аэрокосмической и ракетной техники, что в свою очередь ставит перед промышленностью задачу создания точных и надежных систем связи, ориентации и обнаружения подвижных объектов в пространстве. В большинстве случаев данные задачи решаются с прим ...

    Проектирование технологии ремонта гидроцилиндров с использованием полимерных материалов
    Одно из направлений повышения эффективности производства - его переоснащение современной техникой, внедрение передовых технологических процессов и достижений современной науки. В лесной промышленности и лесном хозяйстве таким направлением наряду с увеличением единичной мощности выпускаемой те ...

    Меню сайта