Многослойные нейронные сети
Архитектура многослойной нейронной сети (МНС) состоит из последовательно соединённых слоёв, где нейрон каждого слоя своими входами связан со всеми нейронами предыдущего слоя, а выходами - следующего. НС с двумя решающими слоями может с любой точностью аппроксимировать любую многомерную функцию. НС с одним решающим слоем способна формировать линейные разделяющие поверхности, что сильно сужает круг задач ими решаемых, в частности такая сеть не сможет решить задачу типа “исключающее или”. НС с нелинейной функцией активации и двумя решающими слоями позволяет формировать любые выпуклые области в пространстве решений, а с тремя решающими слоями - области любой сложности, в том числе и невыпуклой. При этом МНС не теряет своей обобщающей способности. Обучаются МНС при помощи алгоритма обратного распространения ошибки, являющегося методом градиентного спуска в пространстве весов с целью минимизации суммарной ошибки сети. При этом ошибки (точнее величины коррекции весов) распространяется в обратном направлении от входов к выходам, сквозь веса, соединяющие нейроны.
Простейшее применение однослойной НС [6] (называемой автоассоциативной памятью) заключается в обучении сети восстанавливать подаваемые изображения. Подавая на вход тестовое изображение и вычисляя качество реконструированного изображения, можно оценить насколько сеть распознала входное изображение. Положительные свойства этого метода заключаются в том, что сеть может восстанавливать искажённые и зашумленные изображения, но для более серьёзных целей он не подходит.
Рис. 1. Многослойная нейронная сеть для классификации изображений. Нейрон с максимальной активностью (здесь первый) указывает принадлежность к распознанному классу.
МНС так же используется для непосредственной классификации изображений – на вход подаётся или само изображение в каком-либо виде, или набор ранее извлечённых ключевых характеристик изображения, на выходе нейрон с максимальной активностью указывает принадлежность к распознанному классу (рис. 1). Если эта активность ниже некоторого порога, то считается, что поданный образ не относится ни к одному из известных классов. Процесс обучения устанавливает соответствие подаваемых на вход образов с принадлежностью к определённому классу. Это называется обучением с учителем. В применении к распознаванию человека по изображению лица, такой подход хорош для задач контроля доступа небольшой группы лиц. Такой подход обеспечивает непосредственное сравнение сетью самих образов, но с увеличением числа классов время обучения и работы сети возрастает экспоненциально. Поэтому для таких задач, как поиск похожего человека в большой базе данных, требует извлечения компактного набора ключевых характеристик, на основе которых можно производить поиск.
Подход к классификации с использованием частотных характеристик всего изображения, описан в [7]. Применялась однослойная НС, основанная на многозначных нейронах. Отмечено 100% распознавание на базе данных MIT, но при этом осуществлялось распознавание среди изображений, которым сеть была обучена.
Применение МНС для классификации изображений лиц на основе таких характеристик, как расстояния между некоторыми специфическими частями лица (нос, рот, глаза), описано в [8]. В этом случае на вход НС подавались эти расстояния. Использовались так же гибридные методы – в первом на вход НС подавались результаты обработки скрытой марковской моделью, а во втором – результат работы НС подавался на вход марковской модели. Во втором случае преимуществ не наблюдалось, что говорит о том, что результат классификации НС достаточен.
Дополнительно
Планета солнечной системы Уран
Даже в XVIII в.
планетная система была известна только до Сатурна. Но уже тогда предполагали,
что Сатурном список планет не оканчивается, что существуют еще более далекие
планеты, которые невооруженным глазом увидеть нельзя. Это мнение блестяще
подтвердилось, когда в 1781 г. знаменитый английский ...
Распространение дифиллоботриоза в Костромской области и борьба с ним
Дифиллоботриоз плотоядных -
антропозооноз, имеющий очаговое распространение, вызывается различными видами
лентецов из рода Diphyllobothrium, среди которых
наиболее распространен лентец широкий -
Diphyllobothrium latum. Болеют собака, кошка, лисица, песец, куница, а также
человек.
Болезнь часто ...