Многослойные нейронные сети
В [9] показано применение НС для классификации изображений, когда на вход сети поступают результаты декомпозиции изображения по методу главных компонент.
В классической МНС межслойные нейронные соединения полносвязны, и изображение представлено в виде одномерного вектора, хотя оно двумерно. Архитектура свёрточной НС [10] направлена на преодоление этих недостатков. В ней использовались локальные рецепторные поля (обеспечивают локальную двумерную связность нейронов), общие веса (обеспечивают детектирование некоторых черт в любом месте изображения) и иерархическая организация с пространственными подвыборками (spatial subsampling). Свёрточная НС (СНС) обеспечивает частичную устойчивость к изменениям масштаба, смещениям, поворотам, искажениям. Архитектура СНС состоит из многих слоёв, каждый из которых имеет несколько плоскостей, причём нейроны следующего слоя связаны только с небольшим числом нейронов предыдущего слоя из окрестности локальной области (как в зрительной коре человека). Веса в каждой точке одной плоскости одинаковы (свёрточные слоя). За свёрточным слоем следует слой, уменьшающий его размерность путём локального усреднения. Затем опять свёрточный слой, и так далее. Таким образом, достигается иерархическая организация. Более поздние слои извлекают более общие характеристики, меньше зависящие от искажений изображения. Обучается СНС стандартным методом обратного распространения ошибки. Сравнение МНС и СНС [10] показало существенные преимущества последней как по скорости, так и по надёжности классификации. Полезным свойством СНС является и то, что характеристики, формируемые на выходах верхних слоёв иерархии, могут быть применимы для классификации по методу ближайшего соседа (например, вычисляя евклидово расстояние), причём СНС может успешно извлекать такие характеристики и для образов, отсутствующих в обучающем наборе. Для СНС характерны быстрая скорость обучения и работы. Тестировании СНС на базе данных ORL, содержащей изображения лиц с небольшими изменениями освещения, масштаба, пространственных поворотов, положения и различными эмоциями, показало приблизительно 98% точность распознавания, причём для известных лиц, предъявлялись варианты их изображений, отсутствующие в обучающем наборе. Такой результат делает эту архитектуру перспективной для дальнейших разработок в области распознавания изображений пространственных объектов.
МНС применяются и для обнаружения объектов определённого типа. Кроме того, что любая обученная МНС в некоторой мере может определять принадлежность образов к “своим” классам, её можно специально обучить надёжному детектированию определённых классов. В этом случае выходными классами будут классы принадлежащие и не принадлежащие к заданному типу образов. В [11] применялся нейросетевой детектор для обнаружения изображения лица во входном изображении. Изображение сканировалось окном 20х20 пикселей, которое подавалось на вход сети, решающей принадлежит ли данный участок к классу лиц. Обучение производилось как с использованием положительных примеров (различных изображений лиц), так и отрицательных (изображений, не являющихся лицами). Для повышения надёжности детектирования использовался коллектив НС, обученных с различными начальными весами, вследствие чего НС ошибались по разному, а окончательное решение принималось голосованием всего коллектива.
Рис. 2. Главные компоненты (собственные лица) и разложение изображения на главные компоненты.
НС применяется так же для извлечения ключевых характеристик изображения, которые затем используются для последующей классификации. В [1,6], показан способ нейросетевой реализации метода анализа главных компонент. Суть метода анализа главных компонент заключается в получении максимально декореллированных коэффициентов, характеризующих входные образы. Эти коэффициенты называются главными компонентами и используются для статистического сжатия изображений, в котором небольшое число коэффициентов используется для представления всего образа. НС с одним скрытым слоем содержащим N нейронов (которое много меньше чем размерность изображения), обученная по методу обратного распространения ошибки восстанавливать на выходе изображение, поданное на вход, формирует на выходе скрытых нейронов коэффициенты первых N главных компонент, которые и используются для сравнения. Обычно используется от 10 до 200 главных компонент. С увеличением номера компоненты её репрезентативность сильно понижается, и использовать компоненты с большими номерами не имеет смысла. При использовании нелинейных активационных функций нейронных элементов возможна нелинейная декомпозиция на главные компоненты. Нелинейность позволяет более точно отразить вариации входных данных. Применяя анализ главных компонент к декомпозиции изображений лиц, получим главные компоненты, называемые собственными лицами (holons в работе [6]), которым так же присуще полезное свойство – существуют компоненты, которые в основном отражают такие существенные характеристики лица как пол, раса, эмоции. При восстановлении компоненты имеют вид, похожий на лицо, причём первые отражают наиболее общую форму лица, последние – различные мелкие отличия между лицами (рис. 2). Такой метод хорошо применим для поиска похожих изображений лиц в больших базах данных. Показана так же возможность дальнейшего уменьшения размерности главных компонент при помощи НС [6]. Оценивая качество реконструкции входного изображения можно очень точно определять его принадлежность к классу лиц.
Дополнительно
Эволюция биологических механизмов запасения энергии
В основу эволюционной концепции биоэнергетики положена гипотеза о
том, что на заре становления жизни адениновая часть АДФ и АДФ-со-держащих
коферментов использовалась в качестве антенны, улавливающей ультрафиолетовый
свет, который в те времена достигал поверхности океана. Поглощение
ультрафиолета ...
Расчет релаксационного генератора на ИОУ
Разработать и рассчитать
релаксационный генератор на ИОУ
(интегральной схеме операционного
усилителя) в соответствии с данными, представленными:
·
вид генератора - мультивибратор
·
режим работы – автоколебательный
·
период следования импульсов Т, мс – 0.09
· ...