Жидкий кристалл

В случае оптически активных жидких кристаллов та­кая классификация сталкивалась с трудностями. Дело в том, что направление (знак) вращения в жидких кристал­лах зависело от длины волн света. Для коротких длин волн величина Ра, например, могла быть положи­тельной, а для более длинноволнового света—отрица­тельной. А могло быть и наоборот. Однако характерным для всех случаев было изменение знака вращения плос­кости поляризации в зависимости от длины волны света, или, как говорят, инверсия знака оптической активности. Такое поведение вращения плоскости поляризации со­вершенно не укладывалось в рамки существовавших представлений об оптической активности.

Удивительными были также и другие свойства, такие, как сильная температурная зависимость названных ха­рактеристик, их очень высокая чувствительность к внеш­ним магнитным и электрическим полям и так далее. Но прежде чем пытаться объяснить перечисленные свойства, необ­ходимо понять, как устроены жидкие кристаллы, и, в частности, ознакомиться с их структурными свойствами, ибо в конечном итоге для объяснения описанных свойств наиболее существенными оказываются именно структур­ные характеристики жидких кристаллов.

Здесь следует сказать, что в конце девятнадцатого — начале двадцатого века многие очень авторитетные учёные весьма скептически относились к открытию Рейнит-цера и Лемана. (Имя Лемана также можно по праву свя­зывать с открытием жидких кристаллов, поскольку он очень активно участвовал в первых исследованиях жидких кристаллов, и даже самим термином «жидкие кри­сталлы» мы обязаны именно ему.) Дело в том, что не только описанные противоречивые свойства жидких кри­сталлов представлялись многим авторитетам весьма со­мнительными, но и в том, что свойства различных жидко­кристаллических веществ (соединений, обладавших жид­кокристаллической фазой) оказывались существенно раз­личными. Так, одни жидкие кристаллы обладали очень большой вязкостью, у других вязкость была невелика. Одни жидкие кристаллы проявляли с изменением тем­пературы резкое изменение окраски, так что их цвет пробегал все тона радуги, другие жидкие кристаллы та­кого резкого изменения окраски не проявляли. Наконец, внешний вид образцов, или, как принято говорить, тек­стура, различных жидких кристаллов при рассматрива­нии их под микроскопом оказывался совсем различным. В одном случае в поле поляризационного микроскопа могли быть видны образования, похожие на нити, в дру­гом — наблюдались изображения, похожие на горный рельеф, а в третьем — картина напоминала отпечатки пальцев. Стоял также вопрос, почему жидкокристаллическая фаза наблюдается при плавлении только некоторых веществ?

Время шло, факты о жидких кристаллах постепенно накапливались, но не было общего принципа, который позволил бы установить какую-то систему в представле­ниях о жидких кристаллах. Как говорят, настало время для классификации предмета исследований. Заслуга в создании основ современной классификации жидких кри­сталлов принадлежит французскому ученому Ж. Фриделю. В двадцатые годы Фридель предложил разделить все жидкие кристаллы на две большие группы. Одну группу жидких кристаллов Фридель назвал нематическими, дру­гую смектическими. (Почему такие на первый взгляд не­понятные названия дал Фридель разновидностям жидких кристаллов, будет понятно несколько ниже.) Он же пред­ложил общий термин для жидких кристаллов — «мезо морфная фаза». Этот термин происходит от греческого слова «мезос» (промежуточный), а вводя его, Фридель хотел подчеркнуть, что жидкие кристаллы занимают про­межуточное положение между истинными кристаллами и жидкостями как по температуре, так и по своим физи­ческим свойствам. Нематические жидкие кристаллы в классификации Фриделя включали уже упоминавшиеся выше холестерические жидкие кристаллы как подкласс. Когда классификация жидких кристаллов была созда­на, более остро встал вопрос: почему в природе реализу­ется жидкокристаллическое состояние? Полным ответом на подобный вопрос принято считать создание микроско­пической теории. Но в то время на такую теорию не при­ходилось и надеяться (кстати, последовательной микро­скопической теории ЖК не существует и по сей день), поэтому большим шагом вперед было создание чешским ученым X. Цохером и голландцем С. Озерном феноме­нологической теории жидких кристаллов, или, как ее при­нято называть, теории упругости ЖК. В 30-х годах в СССР В. К. Фредерике и В. Н. Цветков первыми изучили не­обычные электрические свойства жидких кристаллов. Можно условно считать, что рассказанное выше отно­силось к предыстории жидких кристаллов, ко времени, когда исследования ЖК велись малочисленными коллек­тивами. Современный этап изучения жидких кристаллов, который начался в 60-е годы и придал науке о ЖК сегод­няшние формы, методы исследований, широкий размах работ сформировался под непосредственным влиянием успехов в технических приложениях жидких кристаллов, особенно в системах отображения информации. В это время было понято и практически доказано, что в наш век микроэлектроники, характеризующийся внедрением микроминиатюрных электронных устройств, потребляю­щих ничтожные мощности энергии для устройств инди­кации информации, т. е. связи прибора с человеком, наи­более подходящими оказываются индикаторы на ЖК. Дело в том, что такие устройства отображения инфор­мации на ЖК естественным образом вписываются в энер­гетику и габариты микроэлектронных схем. Они потреб­ляют ничтожные мощности и могут быть выполнены в виде миниатюрных индикаторов или плоских экранов. Все это предопределяет массовое внедрение жидкокристал­лических индикаторов в системы отображения информа­ции, свидетелями которого мы являемся » настоящее время. Чтобы осознать этот процесс, достаточно вспом­нить о часах или микрокалькуляторах с жидкокристалли­ческими индикаторами. Но это только начало. На смену традиционным и привычным устройствам идут жидко­кристаллические системы отображения информации.jkbk часто бывает, технические потребности не только стимулируют разработку проблем, связанных с практи­ческими приложениями, но и часто заставляют переос­мыслить общее отношение к соответствующему разделу науки. Так произошло и с жидкими кристаллами. Сейчас понятно, что это важнейший раздел физики конденсиро­ванного состояния.

Перейти на страницу: 1 2 3 4 5 6 7 8

Дополнительно

Колониальная организация и межклеточная коммуникация у микроорганизмов
Обзор посвящен современным концепциям и данным, свидетельствующим о целостном характере микробных популяций (колоний, био-плёнок и др.) как своеобразных "суперорганизмов". При этом особое внимание уделяется таким явлением как апоптоз, бактериальный альтруизм, эффект кворума, коллективная ...

Эволюция энергетических процессов у эубактерий
В главах 11 и 12 были обсуждены проблемы возникновения первичной клетки из гипотетической протоклетки и последующего пути прогрессивной эволюции первичной клетки. Как было обнаружено в 70-х гг., на раннем этапе этого пути могло произойти выделение трех основных ветвей, каждая из которых самостояте ...

Меню сайта