Жидкий кристалл

Какие же, кроме уже обсуждавшихся функций, могут выполнять модуляторы света? При соответствующем под­боре режима работы модулятора они могут выделять контур проектируемого на него изображения. Если кон­тур перемещается, то можно визуализировать его дви­жение. При этом существенно, что длина волны записы­вающего изображения излучения и считывающего излу­чения могут отличаться. Поэтому модуляторы света по­зволяют, например, визуализировать инфракрасное из­лучение, или с помощью видимого света модулировать пучки инфракрасного излучения, или создавать изобра­жения в инфракрасном диапазоне длин волн.

В другом режиме работы модуляторы света могут выделять области, подвергнутые нестационарному осве­щению. В этом режиме работы из всего изображения выделяются, например, только перемещающиеся по изо­бражению световые точки, или мерцающие его участки. Модуляторы света могут использоваться как усилители яркости света (в 10^—10° раз и более) В связи же с их высокой пространственной разрешающей способностью их использование оказывается эквивалентным усилителю с очень большим (10"—10^) числом каналов. Перечисленные функциональные возможности оптических модуляторов дают Основание использовать их 6 многочисленных задачах обработки оптической инфор­мации, таких как распознавание образов, подавление по­мех, спектральный и корреляционный анализ, интерфе­рометрия, в том числе запись голограмм в реальном мас­штабе времени, и т. д. Насколько широко перечислен­ные возможности жидкокристаллических оптических мо­дуляторов реализуются в надежные технические устрой­ства, покажет ближайшее будущее.

Оптический микрофон.

Только что было рассказано об управлении световыми потоками с помощью света. Однако в системах оптической обработки информации и связи возникает необходимость преобразовывать не только световые сигналы в световые, но и другие самые разнообразные воздействия в световые сигналы. Такими воздействиями могут быть давление, звук, температура, деформация и т. д. И вот для преобразования этих воз­действий в оптический сигнал жидкокристаллические ус­тройства оказываются опять-таки очень удобными и пер­спективными элементами оптических систем.

Конечно, существует масса методов преобразовывать перечисленные воздействия в оптические сигналы, одна­ко подавляющее большинство этих методов связано сна­чала с преобразованием воздействия в электрический сигнал, с помощью которого затем можно управлять световым потоком. Таким образом, методы эти двусту­пенчатые и, следовательно, не такие уж простые и эко­номичные в реализации. Преимущество применения в этих целях жидких кристаллов состоит в том, что с их помощью самые разнообразные воздействия можно не­посредственно переводить в оптический сигнал, что уст­раняет промежуточное звено в цепи воздействие—све­товой сигнал, а значит, вносит принципиальное упроще­ние в управление световым потоком. Другое достоинст­во ЖК-элементов в том, что они легко совместимы с уз­лами волоконно-оптических устройств.

Чтобы проиллюстрировать возможности с помощью ЖК управлять световыми сигналами, расскажем о прин­ципе работы «оптического микрофона» на ЖК—устрой­ства, предложенного для непосредственного перевода акустического сигнала в оптический.

Принципиальная схема устройства оптического мик­рофона очень проста. Его активный элемент представляет собой ориентированный слой нематика. Звуковые колебания создают периодические во времени деформации слоя, вызывающие также переориентации молекул и модуляцию поляризации (интенсивности) проходящего поляризованного светового потока.

Исследования характеристик оптического микрофона на ЖК, выполненные в Акустическом институте АН СССР, показали, что по своим параметрам он не уступает су­ществующим образцам и может быть использован в оп­тических линиях связи, позволяя осуществлять непосред­ственное преобразование звуковых сигналов в оптиче­ские. Оказалось также, что почти во всем температурном интервале существования нематической фазы его акустооптические характеристики практически не изменяются

Перейти на страницу: 4 5 6 7 8 9 10 11 12

Дополнительно

Эволюция биологических механизмов запасения энергии
В основу эволюционной концепции биоэнергетики положена гипотеза о том, что на заре становления жизни адениновая часть АДФ и АДФ-со-держащих коферментов использовалась в качестве антенны, улавливающей ультрафиолетовый свет, который в те времена достигал поверхности океана. Поглощение ультрафиолета ...

Внутренняя структура протона и новый способ получения энергии
Протон был открыт в начале 20-х г.г. в экспериментах с альфа-частицами. В опытах по рассеянию на протонах электронов и гамма-квантов были получены достоверные доказательства существования некой внутренней структуры у этой частицы. В 1970 г. в Стенфордском центре линейного ускорителя (СЛАК) удалось ...

Меню сайта