Стратифицированный анализ и описание КММ системного элемента

Концептуальные метамодели элемента, основанные на записи ( 1 ), могут образо-

вывать некоторые иерархии. Уровни таких иерархий определяются степенью ( этапами ) конкретизации свойств элемента. Ранжирование КММ ( 1 ) по шкале "Абстрактное - Конкретное" на основе метода стратификации, следовательно, приводит к иерархичес-

кой дедуктивной системе концептуальных метамоделей. Такая система может быть ис-

пользована для математического моделирования конкретных элементов как некоторый исходный базовый инвариант, интерпретируемый в конкретную математическую мо-

дель.

В зависимости от степени конкретизации, сформируем дедуктивную систему, вклю-чающую следующие уровни КММ элемента :

КММ элемента на теоретико-системном уровне ( ТСУ );

КММ элемента на уровне непараметрической статики ( УНС );

КММ элемента на уровне параметрической статики ( УПС );

КММ элемента на уровне непараметрической динамики ( УНД );

КММ элемента на уровне параметрической динамики ( УПД ).

Рассмотрим более подробно КММ на каждом из перечисленных уровней.

КММ теоретико-системного уровня

Наиболее общую и абстрактную форму описания функционирования системного

элемента дает концептуальная метамодель теоретико-системного уровня ( ТСУ ). Это описание включает векторное множество входных воздействий на элемент

и векторное множество выходных реакций ( откликов ) элемента

.

Кроме того, на рассматриваемом уровне абстракции учитывается факт связности век-

торного множества с соответствующим векторным множеством посредством отображения "j". Однако, отображение "j" не указывает каким образом рассматривае-

мые множества связаны.

Таким образом, КММ теоретико-системного уровня задаются тройкой

. ( 2 )

КММ уровня непараметрической статики

Второй уровень представления КММ включает в рассмотрение отображение , определяющее правила преобразования входов в выходы , т.е. что необходимо сделать, чтобы при условии получить , адекватное целевому функционированию элемента . В общем случае - отображение может быть представлено скалярной или векторной функцией, а также функционалом или оператором. Концептуальная метамо-

дель уровня непараметрической статики, следовательно, представляется кортежем вида

. ( 3 )

Перейти на страницу: 1 2 3

Дополнительно

Численная модель эволюции плавающих на сферической мантии и взаимодействующих континентов
С развитием методов численного моделирования глобальных геодинамических процессов появилась возможность исследовать механизм дрейфа континентов с периодическим объединением их в суперконтиненты типа Пангеи. В предыдущих работах авторов разработан метод численного решения системы уравнений переноса ...

Взаимозаменяемость, стандартиризация и технические измерения
Выполнение данной курсовой работы преследует собой следующие цели: – научить студента самостоятельно применять полученное знание по курсу ВСТИ на практике; – изучение методов и процесса работы со справочной литературой и информацией ГОСТ; – приобретение необхо ...

Меню сайта