Расчет на изгиб пластинчатых упругих элементов, расположенных в плоскости, перпендикулярной оси ступицы

Е — модуль продольной упругости материала;

— приведенная гибкость стержня при продольном изгибе;

imin — наименьший радиус инерции поперечного сечения;

m — коэффициент приведённой длины;

l — длина стержня (рессоры).

В общем случае сжатого монолитного стержня (рессоры) критическая сила определяется как:

(4.16)

,

где Jmin — наименьший из главных центральных моментов инерции сечения

l — полная длина стержня;

— коэффициент критической нагрузки.

Коэффициенты h и m зависят от способа закрепления торцовых и промежуточных сечений рессоры, характера её нагружения продольными силами, закона изменения сечения стержня по длине.

Для рессор постоянного сечения, нагруженных продольными силами, приложенными к их торцевым сечениям, коэффициент h зависит только от условий закрепления концов рессоры. При сжатии рессоры с эксцентриситетом в пределах упругих деформаций наблюдается сложная нелинейная зависимость между напряжениями и сжимающей силой. Величина эксцентриситета е влияет на быстроту нарастания деформаций: чем больше эксцентриситет, те быстрее нарастают прогибы при увеличении сжимающей силы Р.

Рассмотрим рессору, шарнирно закреплённую на концах (см. рисунок 4.2).

Если сжимающие силы приложены на концах с эксцентриситетом е, прогиб посредине стержня приближенно равен:

(4.17)

, где

Підпис: Рисунок 4.2 Рессора, шарнирно закреплённая на концах. Расчетная схема.

Если сжимающая сила Р стремится к эйлеровой критической силе, , прогиб быстро возрастает. Если до загружения стержень (рессора) имела начальное искривление, которое приближенно можно считать синусоидой с одной полуволной и амплитудой f0, то при действии продольной силы Р дополнительный прогиб посредине будет равен:

(4.18)

В этом случае прогиб также неопределённо возрастает, если сжимающая сила приближается к критическому значению.

Исходя из сказанного выше, применительно к нашей задаче можно сказать, что критическая сила для конической консольной балки может быть вычислена по формуле (4.16) как

(4.19)

Перейти на страницу: 1 2 3

Дополнительно

Планета солнечной системы Уран
Даже в XVIII в. планетная система была известна только до Сатурна. Но уже тогда предполагали, что Сатурном список планет не оканчивается, что существуют еще более далекие планеты, которые невооруженным глазом увидеть нельзя. Это мнение блестяще подтвердилось, когда в 1781 г. знаменитый английский ...

Принципы промышленной первичной переработки нефти
...

Меню сайта