Методы теоретической популяционной генетики

Отметим, что подобные уравнения используются в модели квазивидов [5], см Лекция 2

Пренебрегая мутациями, мы можем анализировать динамику генов в популяции посредством уравнений:

dPi /dt = Wi Pi - <W> Pi , i = 1, ., K. (4)

Используя (1), (2), (4), можно получить (при условии, что величины Wij постоянны), что

скорость роста средней приспособленности пропорциональна дисперсии приспособленности V = S i Pi ( Wi - <W>)2 [1,3]:

d<W>/dt = 2 S i Pi ( Wi - <W>)2. (5)

Таким образом, средняя приспособленность – неубывающая величина. В соответствии с (4), (5), величина L = Wmax - <W> есть функция Ляпунова для рассматриваемой динамической системы (Wmax – локальный или глобальный максимум приспособленности, в окрестности которого рассматривается динамика популяции) [3]. Это означает, что величина L всегда уменьшается до тех пор, пока не будет достигнуто равновесное состояние (dPi /dt = 0).

Уравнение (5) характеризует фундаментальную теорему естественного отбора (Р.Фишер,1930), которая в нашем случае может быть сформулирована следующим образом [3]:

"В достаточно большой панмиктической популяции, наследование в которой определяется одним n-аллельным геном, а давление отбора, задаваемое Wij , постоянно, средняя приспособленность популяции возрастает, достигая стационарного значения в одном из состояний генетического равновесия. Скорость изменения средней приспособленности пропорциональна аддитивной генной дисперсии и обращается в нуль при достижении генетического равновесия."

Описанная модель – простой пример модели, использующей детерминистический подход. В рамках этого подхода был разработан широкий спектр аналогичных моделей, которые описывают различные особенности динамики генных распределений, например, учитывают несколько генных локусов, возраст особей, число мужских и женских особей, пространственную миграцию особей, подразделение популяции на субпопуляции и т.п. Многие из моделей и расчетов были предназначены для интерпретации конкретных генетических экспериментальных данных [1,3,4] .

Стохастические модели

Детерминистические модели позволяют эффективно описывать динамику распределения генов в эволюционирующих популяциях. Однако эти модели основаны на предположении бесконечного размера популяции, которое является слишком сильным для многих реальных случаев. Чтобы преодолеть это ограничение, были разработаны вероятностные методы теоретической популяционной генетики [1,3,4,6-8]. Эти методы включают анализ с помощью цепей Маркова (в частности, метод производящих функций) [4,7], и диффузионные [1,3,4,6,8] методы.

Ниже мы кратко рассмотрим основные уравнения и характерные примеры применения диффузионного метода. Этот метод достаточно нетривиален и его применение приводит к достаточно содержательным результатам.

Прямое и обратное уравнения Колмогорова

Рассмотрим популяцию диплоидных организмов с двумя аллелями A1 и A2 в некотором локусе. Численность популяции n предполагается конечной, но достаточно большой, так что частоты гена могут быть описаны непрерывными величинами. Мы также предполагаем, что численность популяции n постоянна.

Введем функцию j = j (X,t|P,0) , которая характеризует плотность вероятности того, что частота гена A1 равна X в момент времени t при условии, что начальная частота (в момент t = 0) была равна P. В предположении малого изменения частот генов за одно поколение, динамика популяции может быть описана приближенно следующими дифференциальными уравнениями в частных производных [1,3,4,8]:

¶ j /¶ t = - ¶ (Md X j )/¶ X + (1/2)¶ 2(VdX j )/¶ X 2 , (6)

¶ j/¶ t = Md P ¶ j /¶ P + (1/2)Vd P ¶ 2j/¶ P 2 , (7)

где Md X , Md P и VdX , Vd P – средние значения и дисперсии изменения частот X, P за одно поколение, соответственно; единица времени равна длительности одного поколения. Уравнение (6) есть прямое уравнение Колмогорова. (В физике это уравнение называют уравнением Фоккера-Планка), уравнение (7) – обратное уравнение Колмогорова.

Перейти на страницу: 1 2 3 4 5

Дополнительно

Взаимозаменяемость, стандартиризация и технические измерения
Выполнение данной курсовой работы преследует собой следующие цели: – научить студента самостоятельно применять полученное знание по курсу ВСТИ на практике; – изучение методов и процесса работы со справочной литературой и информацией ГОСТ; – приобретение необхо ...

Расчет релаксационного генератора на ИОУ
Разработать и рассчитать релаксационный генератор на ИОУ (интегральной схеме операционного усилителя) в соответствии с данными, представленными: · вид генератора - мультивибратор · режим работы – автоколебательный · период следования импульсов Т, мс – 0.09 · ...

Меню сайта