Методы теоретической популяционной генетики

Отметим, что подобные уравнения используются в модели квазивидов [5], см Лекция 2

Пренебрегая мутациями, мы можем анализировать динамику генов в популяции посредством уравнений:

dPi /dt = Wi Pi - <W> Pi , i = 1, ., K. (4)

Используя (1), (2), (4), можно получить (при условии, что величины Wij постоянны), что

скорость роста средней приспособленности пропорциональна дисперсии приспособленности V = S i Pi ( Wi - <W>)2 [1,3]:

d<W>/dt = 2 S i Pi ( Wi - <W>)2. (5)

Таким образом, средняя приспособленность – неубывающая величина. В соответствии с (4), (5), величина L = Wmax - <W> есть функция Ляпунова для рассматриваемой динамической системы (Wmax – локальный или глобальный максимум приспособленности, в окрестности которого рассматривается динамика популяции) [3]. Это означает, что величина L всегда уменьшается до тех пор, пока не будет достигнуто равновесное состояние (dPi /dt = 0).

Уравнение (5) характеризует фундаментальную теорему естественного отбора (Р.Фишер,1930), которая в нашем случае может быть сформулирована следующим образом [3]:

"В достаточно большой панмиктической популяции, наследование в которой определяется одним n-аллельным геном, а давление отбора, задаваемое Wij , постоянно, средняя приспособленность популяции возрастает, достигая стационарного значения в одном из состояний генетического равновесия. Скорость изменения средней приспособленности пропорциональна аддитивной генной дисперсии и обращается в нуль при достижении генетического равновесия."

Описанная модель – простой пример модели, использующей детерминистический подход. В рамках этого подхода был разработан широкий спектр аналогичных моделей, которые описывают различные особенности динамики генных распределений, например, учитывают несколько генных локусов, возраст особей, число мужских и женских особей, пространственную миграцию особей, подразделение популяции на субпопуляции и т.п. Многие из моделей и расчетов были предназначены для интерпретации конкретных генетических экспериментальных данных [1,3,4] .

Стохастические модели

Детерминистические модели позволяют эффективно описывать динамику распределения генов в эволюционирующих популяциях. Однако эти модели основаны на предположении бесконечного размера популяции, которое является слишком сильным для многих реальных случаев. Чтобы преодолеть это ограничение, были разработаны вероятностные методы теоретической популяционной генетики [1,3,4,6-8]. Эти методы включают анализ с помощью цепей Маркова (в частности, метод производящих функций) [4,7], и диффузионные [1,3,4,6,8] методы.

Ниже мы кратко рассмотрим основные уравнения и характерные примеры применения диффузионного метода. Этот метод достаточно нетривиален и его применение приводит к достаточно содержательным результатам.

Прямое и обратное уравнения Колмогорова

Рассмотрим популяцию диплоидных организмов с двумя аллелями A1 и A2 в некотором локусе. Численность популяции n предполагается конечной, но достаточно большой, так что частоты гена могут быть описаны непрерывными величинами. Мы также предполагаем, что численность популяции n постоянна.

Введем функцию j = j (X,t|P,0) , которая характеризует плотность вероятности того, что частота гена A1 равна X в момент времени t при условии, что начальная частота (в момент t = 0) была равна P. В предположении малого изменения частот генов за одно поколение, динамика популяции может быть описана приближенно следующими дифференциальными уравнениями в частных производных [1,3,4,8]:

¶ j /¶ t = - ¶ (Md X j )/¶ X + (1/2)¶ 2(VdX j )/¶ X 2 , (6)

¶ j/¶ t = Md P ¶ j /¶ P + (1/2)Vd P ¶ 2j/¶ P 2 , (7)

где Md X , Md P и VdX , Vd P – средние значения и дисперсии изменения частот X, P за одно поколение, соответственно; единица времени равна длительности одного поколения. Уравнение (6) есть прямое уравнение Колмогорова. (В физике это уравнение называют уравнением Фоккера-Планка), уравнение (7) – обратное уравнение Колмогорова.

Перейти на страницу: 1 2 3 4 5

Дополнительно

Технология выращивания сахарной свеклы в Сумской области
Сахарная свекла - важная техническая культура, корнеплод которой достигает 500г и больше, содержит 19-22% сахара и более, является основным сырьем для сахарной промышленности. Кроме сахара, в процессе переработки корнеплодов получают ценные дополнительные продукты - мелясу и жом. Ботва сахарной св ...

Естественно-научные концепции развития микроэлектронных и лазерных технологий
Электроника - наука о взаимодействии электронов с электромагнитными полями и о методах создания электронных приборов и устройств (вакуумных, газоразрядных, полупроводниковых), используемых для передачи, обработки и хранения информации. Возникла она в начале ХХ века. На ее основе были созданы элект ...

Меню сайта