Методы теоретической популяционной генетики

Первые слагаемые справа в уравнениях (6), (7) описывают давление отбора, которое обусловлено разностью приспособленностей генов A1 и A2. Вторые слагаемые характеризуют случайный дрейф частот, который обусловлен флуктуациями в популяции конечной численности.

Используя уравнение (6), можно определять динамику частот генов во времени. Уравнение (7) позволяет оценивать вероятности фиксации генов.

Предполагая, что 1) приспособленности генов A1 и A2 равны 1 и 1 - s , соответственно и 2) вклады генов в приспособленности генных пар A1 A1, A1 A2 и A2 A2 аддитивны, можно получить, что величины Md X , Md P и VdX , Vd P определяются следующими выражениями [1,3,4,8]:

Md X = sX(1-X), Md P = sP(1-P), Vd X = X(1-X)/(2n), Vd P = P(1-P)/(2n) . (8)

Случай чисто нейтральной эволюции

Если эволюция чисто нейтральная (s = 0), то уравнение (6) принимает вид:

¶ j/¶ t = (1/4n)¶ 2[X(1-X)j]/¶ X 2 . (9)

Это уравнение было решено аналитически М. Кимурой [1,6]. Само решение имеет сложный вид, основные результаты этого решения сводятся к следующему: 1) в конечной популяции фиксируется только один ген (A1 либо A2); 2) типичное время перехода от начального распределения к конечному составляет величину порядка 2n поколений. Отметим, что этот результат согласуется с оценками лекции 4 , где была рассмотрена несколько иная модель "чисто нейтральной" эволюции.

Вероятность фиксации гена

Используя уравнение (7), мы можем оценить вероятность фиксации гена A1 в конечной популяции. Действительно, рассматривая асимптотику при времени, стремящемся к бесконечности ( t --> inf ), мы можем положить ¶ j /¶ t = 0 и X = 1 ; тогда аппроксимируя вероятность u(P) , которую нужно найти, величиной u(P) = j (1, inf |P,0)/(2n) (здесь u(P) = j(1, inf |P,0)DX , где DX = 1/2n – минимальный шаг изменения частоты в популяции, см. также [3] для более строгого рассмотрения) и комбинируя (7), (8), мы получаем:

s du /dP + (1/4n) d 2u /dP 2 = 0 . (10)

Решая это простое уравнение при естественных граничных условиях: u (1) = 1, u (0) = 0 , мы получим вероятность фиксации гена A1 в конечной популяции [1,3,6]:

u(P) = [1 - exp (- 4nsP)] [1 - exp (- 4ns)]-1 . (11)

Выражение (11) показывает, что если 4ns < < 1 , то имеет место нейтральная фиксация гена: u(P) » P , если 4ns > > 1, то отбирается предпочтительный ген A1 : u(P) » 1; размер популяции nc ~ (4s)-1 есть граничное значение, разделяющее области "нейтрального" и "селективного" отбора.

Итак, математические методы популяционной генетики описывают динамику частот генов в эволюционирующих популяциях. Детерминистические методы используются при описании динамики частот в среднем; стохастические методы учитывают флуктуации в популяциях конечной численности.

Молекулярная эволюция: теория нейтральности

Классическая теория популяционной генетики, содержательно основанная на синтетической концепции эволюции, интенсивно развивалась до 1960-х годов, до тех пор, пока не возникли трудности интерпретации экспериментальных данных молекулярной биологии. В лекции 1 я уже отмечал, в 1950-1960-х годах произошла революция в молекулярной биологии. Была определена структура ДНК, расшифрован генетический код, ученые установили общие принципы работы молекулярно-генетической системы живой клетки.

Интенсивные исследования молекулярной биологии привели к серьезным результатам, касающимся биологической эволюции: была оценена скорость аминокислотных замен в белках, а также получены оценки, характеризующие полиморфизм белков.

Анализируя экспериментальные данные, М.Кимура обнаружил, что когда он пытался объяснить эти эксперименты на основе селекции благоприятных мутаций путем Дарвиновского отбора, то возникли серьезные затруднения. В своей книге [6] Кимура подробно описывает идеи, послужившие основанием для изобретения теории нейтральности. Например, в некоторых своих оценках, основанных на Дарвинском отборе, он получил, что для объяснения экспериментальных данных нужно потребовать, чтобы каждая особь в процессе эволюции давала 22 000 потомков. И для того, чтобы проинтерпретировать данные по молекулярной эволюции белков, Кимура предложил теорию нейтральности [6,9].

Перейти на страницу: 1 2 3 4 5

Дополнительно

Автоматизированное проектирование станочной оснастки
1.1. СТАНОЧНЫЕ ПРИСПОСОБЛЕНИЯ . КЛАССИФИКАЦИЯ , ВИДЫ . 1.1.1. Станочные приспособления . Основную группу технологической оснастки составляют приспособления механосборочного производства. Приспособлениями в машиностроении называют вспомогательные устройства к технологич ...

Эволюция и самоорганизация химических систем. Макромолекулы и зарождение органической жизни
Понятие самоорганизация означает упорядоченность существования материальных динамических, то есть качественно изменяющихся систем. Оно отражает особенности существования таких систем, которые сопровождаются их восхождением на все более высокие уровни сложности и системной упорядоченности или матер ...

Меню сайта