Фотосинтетический кислород роль H2O2

По современным представлениям фотосинтетический кислород выделяется из воды. Имеется ряд соединений, аналогов H2O, взаимодействующих с водоокисляющим комплексом. Среди них особый интерес представляет пероксид водорода в связи с его возможным участием в фотосинтетическом выделении O2. Существуют предположения об H2O2 как промежуточном продукте окисления H2O и даже как об исходном субстрате-доноре электронов. У некоторых цианобактерий и водорослей выделение O2 прекращается в анаэробных условиях. Исследования роли H2O2в фотосинтетическом выделении O2 представляются перспективными.

According to current views, the photosynthetic oxygen is evolved from the water. There is a number of compounds, of the H2O analogues, interacting with the water-oxidizing complex. Among these compounds, of particular interest is hydrogen peroxide as a possible participant in photosynthetic O2 evolution. There are the assumptions of H2O2 as an intermediate in H2O oxidation and, moreover, as the starting electron donor substrate. In several cyanobacteria and algae, O2 evolution in the light is ceased under the anaerobic conditions. The elucidation of the H2O2 role looks promising for the studies on photosynthetic O2 evolution.

Фундаментальная проблема биохимии - механизм фотосинтетического выделения кислорода. Проблема не нова, возникла со времен Джозефа Пристли, открывшего в 1771 г. фотосинтетический кислород. Важность ее решения трудно переоценить: космическая роль зеленого листа по К.А.Тимирязеву заключается в фотосинтезе органических веществ и молекулярного кислорода - субстратов, обеспечивающих жизнедеятельность хемотрофных организмов. Проблема фотосинтетического кислорода имеет комплексный характер, исследования ведутся во многих лабораториях мира. В последние годы в решении проблемы наметился определенный прогресс. Наряду с фундаментальностью, проблема имеет и прикладную перспективу, в частности, ее решение позволило бы использовать принципы фотосинтетического механизма для получения из воды молекулярного водорода в качестве энергоносителя.

По современным представлениям фотосинтетический кислород выделяется из воды [1]. Фотосистема (ФС) II хлоропластов и цианобактерий функционирует как H2O:пластохинон-оксидоредуктаза [2]:

H2O → (Mn)4 → YZ → P680 → Фео → QA → QB QP → QZ (b6f),

где (Mn)4 - четырехъядерный Mn-кластер водоокисляющего комплекса (ВОК), YZ - остаток тирозина-161 в полипептиде D1 фотосистемы II, P680 - реакционный центр ФСII, Фео - промежуточный акцептор электронов (феофитин), QA и QB - первичный и вторичный пластохиноны, QP - мембранный фонд пластохинона, QZ - участок связывания пластохинона в b6f-цитохромном комплексе.

Окисление H2O включает четыре одноэлектронные стадии, приводящие к последовательному накоплению окислительных эквивалентов в Mn-кластере. Соответственно, Mn-кластер может находиться в пяти различных окислительно-восстановительных состояниях, обозначаемых символами S0-S4. Состояния S0 и S1стабильны в темноте, S4 превращается в S0 сопряженно с выделением O2, состояния S2 и S3 не устойчивы и релаксируют в темноте в состояние S1 за десятки секунд. В темноте соотношение S1 : S0 составляет 3-4, поэтому в условиях импульсного освещения, когда каждая световая вспышка вызывает один оборот P680, максимальный выход O2 из H2O наблюдается в ответ на третий импульс; на первый импульс O2 не выделяется.

Данные структурных исследований позволяют предположить, что (Mn)4 представляет собой димер из двух биядерных центров. Это согласуется с данными о функциональной неоднородности четырех Mn-центров (см. [3] и цитированную там литературу). Одна из (Mn)2-групп, (Mn-Mn)ВОК, образует каталитический центр ВОК; другая, (Mn-Mn)C, по-видимому, служит регулятором функциональной активности (Mn-Mn)ВОК. Существует ряд соединений, аналогов H2O, взаимодействующих с ВОК. Так, окисление NH2OH и NH2NH2 ведет к образованию сверхвосстановленных состояний (Mn)4-кластера - состояний S-1 и S-2 [3]: протекают реакции S1 → S-1 и S2 → S-2, которые в рамках представлений о биядерных (Mn)2-группах могут соответствовать переходам:

Перейти на страницу: 1 2 3 4

Дополнительно

Технология выращивания кукурузы на зерно
Кукуруза — одна из основных культур современного мирового земледелия. Это культура разносто­роннего использования и высокой урожайности. На продовольствие в странах мира используется около 20% зерна кукурузы, на технические цели — 15 — 20% и примерно две трети — на корм. Кукурузу выращивают во ...

Естественно-научные концепции развития микроэлектронных и лазерных технологий
Электроника - наука о взаимодействии электронов с электромагнитными полями и о методах создания электронных приборов и устройств (вакуумных, газоразрядных, полупроводниковых), используемых для передачи, обработки и хранения информации. Возникла она в начале ХХ века. На ее основе были созданы элект ...

Меню сайта