Самоорганизация и принцип относительности

Рассмотрим, в качестве повторения пройденного, следующий пример. Пусть ось системы координат состоит из пучка жестких стержней, которые приводятся во вращение часовым механизмом и на которые по всей длине насажены стрелки часов - часовые, минутные, секундные и т.д., а также циферблат - на стержень, который не вращается, и образуют единый протяженный часовой механизм со множеством стрелок. Тем не менее, если это устройство привести в движение (вдоль оси, разумеется), то показания часов перестанут быть одинаковыми, а стержни будут скрученными. Произойдет следующее. В процессе вращения стержня передний его конец отстанет на некоторый угол от заднего конца (аналогично тройке диполей на рис.2), потому передние часы отстанут от задних на некоторый временной интервал. Согнув устройство в разомкнутое кольцо и приведя в движение вокруг нас, мы могли бы безошибочно и явно наблюдать все эти изменения: и скрученность стержней, и разность в показаниях часов.

Однако, при ускорениях стержни, замедляя одни стрелки и ускоряя другие, будут передавать механические усилия и энергию, что наблюдаемо с любой точки зрения и при любых видах движения. Если же стержни разделить на части, лишив способности передавать усилия, то движение механизма перестанет быть единым процессом. При ускорениях новые концы стержней будут проворачиваться относительно друг друга, а показания часов, расположенных на стыке частей с той и другой стороны, разойдутся, что никак не соответствует преобразованиям Лоренца для устройства в целом. По Лоренцу преобразуется только единый механизм.

Рассмотрим теперь коротко как действует принцип относительности в его новом классическом представлении, уже учитывая, что все естественные тела - это самоорганизующиеся системы.

Если представить себе мир, состоящий из множества самоорганизующихся систем (того же типа, что рассматривались), которые погружены в электромагнитную среду с медленными волнами и движутся в ней без трения, то и в этом мире имеет место принцип относительности движений. Если попытаться определить с помощью внутренних средств такого мира скорость среды путем сравнения размеров систем, движущихся в ней с разными скоростями, то это не получится. Причины те же, что и в нашем реальном мире: "поперечные" размеры от скорости не зависят, сравнение же "продольных" уводит к проблеме понимания одновременности (т.е. все происходит так, как описывают в учебниках, и повторять нет смысла). Наблюдается лишь относительная скорость, абсолютная же (относительно среды) таким путем не наблюдаема.

Пусть теперь наблюдатель, живущий в этом мире медленных волн и самоорганизующихся систем (внутренний по отношению к такому миру наблюдатель), попробует по замедлению часов определить скорость относительно среды. Глядя на движущуюся относительно него ось координат (изображенную на рис.4) с расставленными вдоль нее часами, неподвижный наблюдатель увидит пробегающую мимо него череду часов, ход которых фактически замедлен движением относительно среды. Но каждые следующие часы сдвинуты вперед на некоторый временной интервал, и наблюдатель видит их, как сменяющиеся кадры кино, в котором ход часов ускорен. Этот эффект ускоряет наблюдаемую картину в g2раз. Часы, фактически замедленные в g раз, в этом "кино" видятся как ускоренные в g раз. Это - тоже ошибка наблюдения. И наблюдатель не может решить: то ли он сам движется в среде, и это его часы замедлены движением, то ли движется система координат, и он видит "кино".

Замедление хода движущихся часов можно бы, как кажется, обнаружить, сравнивая их показания в два момента времени с двумя часами своей системы координат. Но и тут наблюдатель может думать, что движется его система координат, поэтому показания двух ее часов сдвинуты на временной интервал, и снова не может решить, какая же из систем неподвижна. Всегда наблюдается только относительное время и только как следствие относительного движения. И этим мы обязаны реорганизации систем движением и "замедлению времени" - свойствам электромагнитных объектов.

Перейти на страницу: 2 3 4 5 6 7 8 9

Дополнительно

Технология производства мяса гусей
Животноводство - вторая важнейшая отрасль сельского хозяйства. Она обеспечивает население высокобелковыми и диетическими продуктами питания, а ряд отраслей промыш­ленности - сырьем. Особенность ее в том, что энергоемкость продукции животноводства (затраты энергии на одну кало­рию продукции) в 15-2 ...

Система автоматического регулирования
Современная теория автоматического регулирования является основной частью теории управления. Система автоматического регулирования состоит из регулируемого объекта и элементов управления, которые воздействуют на объект при изменении одной или нескольких регулируемых переменных. Под влиянием входны ...

Меню сайта