Самоорганизация и принцип относительности

Изображение системы координат на рис.4 выглядит непривычно лишь потому, что точками на оси Х' показано не время, определяемое по местным часам, а состояния самих этих часов, т.е. та же величина с обратным знаком.

Пространственно-временной интервал (длина в четырехмерном пространстве-времени) от скорости системы в среде не зависит. С увеличением скорости уменьшаются расстояния между элементами системы, но временные интервалы между ними увеличиваются так, что длины пространственно-временных сохраняются. Расстояние между часами, первоначально равное l, при скорости v становится равным l/g , и образуется временной интервал, равный lv/с2. Квадрат длины гипотенузы треугольника, катеты которого равны l/g и c(lv/с2), равен: (1 - v2/с2)× l2 + (lv/c)2 = l2, т.е. длина гипотенузы при любой скорости равна ее длине при v=0.

Вот это постоянство четырехмерной длины и утверждается постулатом теории относительности о постоянстве размеров тел. Размеров не в обычном смысле, не в трех измерениях, а в четырех. Постулат не относится к длине трехмерной, равной l/g. И не позволяйте критикам путать, как они обычно путают, длину трехмерного отрезка, от скорости зависящую, с четырехмерной “длиной” пространственно-временного интервала, от скорости не зависящей. Не позволяйте им также называть длиной пространственно-временной интервал. Эти две величины различаются принципиально, как килограмм массы от килограмма силы. Именно такую путаницу применяют для критики Лоренца и Фицджеральда, пользуясь всеобщим недопониманием.

Так классическая физика объясняет фундаментальный постулат теории относительности о постоянстве размеров тел в четырехмерном пространстве-времени - его физический смысл, и механизм, реализующий это постоянство.

То же постоянство интервалов имеет место и при криволинейных движениях. Представьте себе гигантской длины кольцевую железную дорогу и на ней такой длинный поезд, что локомотив упирается в последний вагон. С увеличением скорости поезда его длина будет уменьшаться, а локомотив - удаляться от последнего вагона, и с увеличением скорости число вагонов можно добавлять. Если же на нем организована система единого времени, например, по вагонам установлены наши генераторы со счетчиками, то будет видна разность хода часов между локомотивом и последним вагоном, зависящая от скорости, - как сумма временных интервалов по всей длине поезда. Можно вычислить пространственно-временной интервал по длине поезда. Он и здесь меняться не будет. Зазор между последним вагоном и локомотивом, естественно, не будет постоянным ни в каком смысле.

Так классическая физика работает в области движений, которые теория относительности не рассматривает.

Каждая из наших систем - единый электромагнитный объект, и преобразования Лоренца для каждой из них верны так же, как и для других электромагнитных объектов, движущихся в среде или вне ее. Мы уже выяснили физический смысл преобразований и видим, что их причины и механизм действий находятся внутри объекта, т.е. преобразования Лоренца - это свойство электромагнитных объектов, а не пространства-времени и не среды. Хотя рассмотрели мы лишь частный случай, но видим в нем следствие явления общего: ограниченности скорости полей и сигналов, связывающих систему или процесс воедино, и понимаем, что те же выводы применимы везде и ко всем электромагнитным объектам и процессам, составляющим единое явление. И можем уверенно сказать, что преобразования Лоренца не будут верны физически для группы предметов или процессов, не связанных между собой и не составляющих единого предмета или процесса. Хотя верны для каждого из них отдельно и даже кажутся верными для групп с точки зрения меняющего свою скорость наблюдателя. Размеры таких групп, расстояния и временные интервалы в них не зависят от скорости и не меняются при совместных ускорениях. Отсутствуют тому причины: связи. Преобразования Лоренца применимы не ко всему, что есть в пространстве, и потому, представляя их в виде общего свойства пространства-времени, можно получить ошибки при вычислениях, и нужно быть осторожным.

Перейти на страницу: 1 2 3 4 5 6 7 8 9

Дополнительно

Технология выращивания кукурузы на зерно
Кукуруза — одна из основных культур современного мирового земледелия. Это культура разносто­роннего использования и высокой урожайности. На продовольствие в странах мира используется около 20% зерна кукурузы, на технические цели — 15 — 20% и примерно две трети — на корм. Кукурузу выращивают во ...

Крепление резины к металлам
С развитием техники, созданием новых машин и аппаратов появилась потребность в деталях, совмещающих механические свойства металлов с вибростойкостью, прочностью на истирание, антикоррозионной стойкостью и другими свойствами, присущими резиновым смесям. Таким образом возникла задача прочного и надё ...

Меню сайта