Самоорганизация и принцип относительности

Нам придется изучать явления, которые проявляются лишь при скоростях, сравнимых со скоростью света. Наблюдать же за изучаемым объектом мы можем только с помощью света или иных электромагнитных волн, скорость которых в таких случаях сравнима со скоростью наблюдаемого объекта. Появляются связанные с этим ошибки наблюдения, которые в ряде случаев не могут быть вычислены и искажают или даже полностью скрывают наблюдаемое явление. Частная теория относительности отличается тем, что ошибки наблюдения не считает ошибками, даже не говорит о них, а результаты ошибочных наблюдений полагает относительной истиной, за которой вовсе не скрыта истина другая - абсолютная. На движения, наблюдаемые без ошибок, эта теория не распространяется. Мы не будем придерживаться той парадигмы всеобщей относительности, которая отрицает абсолютные факты и истины, полагая все истины, факты и критерии лишь относительными, потому непостоянными и необязательными. Ошибки наблюдения будем четко отделять от наблюдаемых явлений.

Рассматривая системы в движении вокруг нас по окружности, мы наблюдали бы без искажений, как зависят от скорости их размеры и текущие в них процессы. В этом случае расстояние между нами и объектом наблюдения постоянно, поэтому свет или другие электромагнитные сигналы, несущие информацию о наблюдаемом объекте, приходят к нам с запаздыванием, но всегда одинаковым и известным, и мы видим события прошедшие, но не искаженные. Когда же объект движется прямолинейно в пустом пространстве, информация о нем искажается ошибкой наблюдения, связанной с переменным расстоянием, переменным и не известным по величине запаздыванием сигналов наблюдения, и системы становятся, как говорят в технике, ненаблюдаемыми. Для коррекции ошибок нужно бы знать не только величины скоростей наблюдателя и объекта наблюдения, но и сигнала наблюдения в мировом пространстве, т.е. абсолютную скорость сигнала. Но такая информация нам пока недоступна. Она и заменяется обычно постулатами и мнениями, которые объективной информацией не являются.

Мы рассмотрим те же явления, что и теория относительности, но в движениях наблюдаемых, где нет ошибок наблюдения и все величины определимы без знания абсолютной скорости света. Наши системы в прямолинейном движении полностью наблюдаемы тогда, когда для наблюдения используются сигналы, более быстрые, чем волновое поле, связывающее систему воедино. В пустом пространстве таких сигналов нет. Однако, электромагнитные поля системы можно замедлять, помещая системы в электромагнитные устройства и среды, и они становятся наблюдаемыми с помощью обычного (не замедленного) света. Электромагнитные явления в средах и в пустом пространстве описываются принципиально теми же уравнениями Максвелла, поэтому поведение систем в среде и в пустоте столь же принципиально одинаково.

Существуют такие электромагнитные среды, в том числе жидкие, в которых скорость электромагнитных волн (в некотором диапазоне частот) много меньше, чем в пустоте. Будем представлять себе, что наши системы из генераторов погружаются в такую жидкость, она заполняет промежутки между элементами, и волновые поля движутся в ней. Существуют волноводы, в которых скорость волн может быть как угодно малой. Например, металлические трубы со стенками в виде щетки. Можно помещать системы и в них, как в среду без трения, что и будем иметь в виду, игнорируя трение в дальнейшем. Системы с медленными волнами становятся наблюдаемыми через обычные (не замедленные) световые сигналы, и ошибки наблюдения не скрывают за собой истинных событий, как это происходит при наблюдениях вне среды, где скорости всех электромагнитных волн одинаковы. Кроме того, движение системы относительно среды можно рассматривать, приводя в движение среду и оставляя систему неподвижной. Тогда можно полностью исключить эти ошибки.

Перейти на страницу: 1 2 3 4 5 6 7

Дополнительно

Расчет релаксационного генератора на ИОУ
Разработать и рассчитать релаксационный генератор на ИОУ (интегральной схеме операционного усилителя) в соответствии с данными, представленными: · вид генератора - мультивибратор · режим работы – автоколебательный · период следования импульсов Т, мс – 0.09 · ...

Нейросетевые методы распознавания изображений
Выполнен обзор нейросетевых методов, используемых при распознавании изображений. Нейросетевые методы - это методы, базирующиеся на применении различных типов нейронных сетей (НС). Основные направления применения различных НС для распознавания образов и изображений: применение для извлечение ...

Меню сайта