Расслоенные пространства внутренних степеней свободы

к квадрату метрической функции.

Проверка правильности найденных здесь составляющих связностей производится посредством достижения выполнения условия Эйлера

.

Найденные здесь значения метрического тензора приводят

к выполнению данного условия .

Определим коэффициенты

.

Поставим конкретные значения для составляющих метрического тензора. Получаем

 
,

, .

Составляющие этих матрицы сводятся к , и . Используя производные от этих величин, получаем конкретные значения :

, .

Определим величины , входящие в уравнение геодезических, по формуле [ 2 ]:

Имеем

Используя формулы:

Получаем для и :

Правильность введенных здесь значений для и можно проверить, если выполняется условие

Такое тождество выполняется

при подстановке конкретных значений.

Определим коэффициенты и [ 2 ].

Существует связь [ 2 ]

Если , тогда

.

Речь идет о параллельном переносе составляющих вектора . Имеем

=

где

В введенном пространстве могут быть определены переносы тензоров более высокого ранга по формулам, которые приведены в работах [ 1, 2 ].

Заключение.

Построенные здесь геометрические структуры расслоенного пространства внутренних степеней свободы, ассоциируемого с термоэлектрическим состоянием. Возможно многообразие других термоэлектрических состояний. Речь идет о методе

построения геометрических структур, об “офизичивании” геометрии расслоенных пространств. Привлечение в физику расслоенных пространств позволяет построить весьма корректно теории сложных физических систем с большой неоднородностью и анизотропией, с большой нелинейностью и находящихся в сильных физических полях.

Перейти на страницу: 1 2 3 

Дополнительно

Эволюция энергетических процессов у эубактерий
В главах 11 и 12 были обсуждены проблемы возникновения первичной клетки из гипотетической протоклетки и последующего пути прогрессивной эволюции первичной клетки. Как было обнаружено в 70-х гг., на раннем этапе этого пути могло произойти выделение трех основных ветвей, каждая из которых самостояте ...

Методы оценки близости допредельных и предельных распределений статистик
Рассматривается проблема оценки близости предельных распределений статистик и распределений, соответствующих конечным объемам выборок. При каких объемах выборок уже можно пользоваться предельными распределениями? Каков точный смысл термина "можно" в предыдущей фразе? Основное внимание уд ...

Меню сайта