Расслоенные пространства внутренних степеней свободы

к квадрату метрической функции.

Проверка правильности найденных здесь составляющих связностей производится посредством достижения выполнения условия Эйлера

.

Найденные здесь значения метрического тензора приводят

к выполнению данного условия .

Определим коэффициенты

.

Поставим конкретные значения для составляющих метрического тензора. Получаем

 
,

, .

Составляющие этих матрицы сводятся к , и . Используя производные от этих величин, получаем конкретные значения :

, .

Определим величины , входящие в уравнение геодезических, по формуле [ 2 ]:

Имеем

Используя формулы:

Получаем для и :

Правильность введенных здесь значений для и можно проверить, если выполняется условие

Такое тождество выполняется

при подстановке конкретных значений.

Определим коэффициенты и [ 2 ].

Существует связь [ 2 ]

Если , тогда

.

Речь идет о параллельном переносе составляющих вектора . Имеем

=

где

В введенном пространстве могут быть определены переносы тензоров более высокого ранга по формулам, которые приведены в работах [ 1, 2 ].

Заключение.

Построенные здесь геометрические структуры расслоенного пространства внутренних степеней свободы, ассоциируемого с термоэлектрическим состоянием. Возможно многообразие других термоэлектрических состояний. Речь идет о методе

построения геометрических структур, об “офизичивании” геометрии расслоенных пространств. Привлечение в физику расслоенных пространств позволяет построить весьма корректно теории сложных физических систем с большой неоднородностью и анизотропией, с большой нелинейностью и находящихся в сильных физических полях.

Перейти на страницу: 1 2 3 

Дополнительно

Спутниковая связь
Современные организации характеризуются большим объемом различной информации, в основном электронной и телекоммуникационной, которая проходит через них каждый день. Поэтому важно иметь высококачественный выход на коммутационные узлы, которые обеспечивают выход на все важные коммуникационные линии. ...

Лазерная медицинская установка для целей лучевой терапии Импульс-1
В настоящее время лазерное излучение с большим или меньшим успехом применяется в различных областях науки. Уникальные свойства излучения лазеров, такие, как монохроматичность, когерентность, малая расходимость и возможность при фокусировке получать очень высокую плотность мощности на облучаемой по ...

Меню сайта