Расслоенные пространства внутренних степеней свободы

В физике реализуются расслоенные пространства внутренних степеней свободы. Для демонстрации данного утверждения используется соответствующее термоэлектрическое состояние.

ABSTRACT

In physics the fiber space of internal degrees of freedom are realized. For demonstration of the given statement the conforming thermoelectric condition is used.

Введем базовое пространство [ 1 ] с координатами ( = 1,2): 1 - внутренняя энергия , - тепло . Введем слоевые координаты и , где t - абсолютная температура T, - молярная теплоемкость при постоянном объеме и - молярная теплоемкость при постоянном давлении . Итак, слоевое пространство имеет N = 2 измерений.

Пусть , тогда имеем дело с векторным полем.

Введем метрическую функцию в каждой точке , которая является однородной функцией степени один в слоевых координатах и однородной функцией степени нуль в базовых координатах. Чтобы такого добиться, следует еще ввести постоянную составляющую вектора . Исходя из физических соображений, такой составляющей вектора может служить величина , являющаяся универсальной газовой постоянной R. Таким образом, мы переходим к слоевому пространству c N + 1 измерений. Подобное наблюдается в СТО, где вводится скорость света с и переходят четырехмерному пространству. Функция определяет длину вектора . Удобно перейти к функции = , которая является однородной функцией степени два в слоевых координатах. Составляющие метрического тензора в общем случае определяются по формуле [ 2]

, где =.

Это есть однородные функции степени нуль в слоевых координатах.

Тогда

и .

В точке имеется и пространство с координатами , которые определяются следующим образом

Имеем

,

Параллельный перенос будет, если = 0 и = 0.

В качестве модельного дифференциального уравнения привлекаем уравнение типа модифицированного нелинейного дифференциального уравнения Кортевега - де Вриза, которое хорошо изучено. Этим уравнением мы описываем термоэлектрическое состояние:

Перейти на страницу: 1 2 3

Дополнительно

Лазерная медицинская установка для целей лучевой терапии Импульс-1
В настоящее время лазерное излучение с большим или меньшим успехом применяется в различных областях науки. Уникальные свойства излучения лазеров, такие, как монохроматичность, когерентность, малая расходимость и возможность при фокусировке получать очень высокую плотность мощности на облучаемой по ...

Репрезентативная теория измерений и её применения
Репрезентативная теория измерений (РТИ) согласно принятой в обзоре [1] классификации научных направлений является одной из составных частей статистики объектов нечисловой природы. Основные понятия этой теории и некоторые ее применения рассматривались в обзорах [1,2], в которых приведено так ...

Меню сайта