Возникновение фотосинтеза, использующего видимый свет

Устройство бактериородопсина намного проще системы хлорофилльного фотосинтеза. Белковая часть бактериородопсина представляет собой одну полипептидную цепь средней длины, которая не содержит других коферментов и простетических групп, кроме ретиналя. Бактериородопсин чрезвы­чайно устойчив: без потери активности его можно кипятить в автоклаве при + 130°С, изменять содер­жание NaCl в омывающем мембрану растворе от ну­ля до насыщения, в широких пределах менять рН этого раствора. Более того, можно удалить выступа­ющие из мембраны концевые участки полипептидной цепи и даже расщепить эту цепь в одном месте по середине без ущерба для активности насоса. В то же время эффективность бактериородопсина как преобразователя энергии сравнительно низка: всего 20% энергии светового кванта превращается в ∆Н+. При этом на один поглощенный квант через мембрану переносится один ион Н+.

Рис. 4. Бактериородопсиновый фотосинтез со-лелюбивых архебактерий. Ионы 1-Г откачиваются из клетки бактериородопсином - белком, содер­жащим ретиналь в качестве хромофора, то есть группировки, поглощающей видимый свет. Ионы Н* возвращаются в клетку, двигаясь "под гору" че­рез Н+ -АТФазный комплекс F0F,. При этом оказы­вается, что Н+ - АТФаза катализирует обратную ре­акцию, то есть синтез АТФ, а не его гидролиз

Хлорофилльный фотосинтез

Хлорофилльный фотосинтез отличается от бактериородопсинового большей эффективностью ис­пользования светового кванта. Он устроен таким образом, что либо на каждый квант переносится че­рез мембрану не один, а два иона Н+, либо помимо транспорта Н+ происходит запасание энергии в форме углеводов, синтезируемых из С02 и Н2О. Вот почему бактериородопсиновый фотосинтез был от­теснен эволюцией с авансцены. Он сохранился только у бактерий, живущих в экстремальных усло­виях, где более сложный и менее устойчивый хлорофилльный фотосинтез, по-видимому, просто не мо­жет существовать.

Хлорофилльный фотосинтез катализируется фер­ментной системой, включающей несколько белков. Квант света поглощается хлорофиллом, молекула которого, перейдя в возбужденное состояние, пе­редает один из своих электронов в фотосинтетиче­скую цепь переноса электронов. Эта цепь пред­ставляет собой последовательность окислительно-восстановительных ферментов и коферментов, на­ходящихся во внутренней мембране бактерий или хлоропластов растений, где локализованы также белки, связанные с хлорофиллом. Компоненты це­пи содержат, как правило, ионы металлов с пере­менной валентностью (железо, медь, реже марганец или никель). При этом железо может входить в состав тема (в таком случае белки называются цитохромами). Большую роль играют также негемовые железопротеиды, где ион железа связан с белком че­рез серу цистеина или реже азот гистидина. Помимо ионов металлов роль переносчиков электронов иг­рают производные хинонов, такие, как убихинон, пластохинон и витамины группы К.

Перенос по цепи электрона, отнятого от возбуж­денного хлорофилла, завершается по-разному в за­висимости от типа фотосинтеза. У зеленых бакте­рий, использующих комплекс хлорофилла и белка, называемый фотосистемой 1 (рис. 5, а), продуктом оказывается НАДН, то есть восстановленная форма НАД+. Восстанавливаясь, то есть присоединяя два электрона, НАД+ связывает также один Н+. В даль­нейшем образованный таким образом НАДН окис­ляется, передавая свой водород на различные субст­раты биосинтезов.

Перейти на страницу: 1 2 3

Дополнительно

Принципы промышленной первичной переработки нефти
...

Оборудование для механического обезвоживанья и сушки текстильных материалов
Сушка является самым распространенным технологическим процессом красильно-отделочного производства. На многих от­делочных фабриках сушильное оборудование занимает прибли­зительно до 30 % производственных площадей, потребляет до 40 % всего расходуемого тепла и до 30 % электроэнергии. Одним из эффек ...

Меню сайта