Молекулярные основы преобразования и запасания энергии света при фотосинтезе

Основным итогом фотохимической стадии пре­образования энергии света у кислородвыделяющих фотосинтезируюших организмов является фотопе­ренос электронов от воды к НАДФ+. Обе фотосис­темы (ФС-1 и ФС-2) участвуют в этом процессе, обеспечивая двухступенчатое поступление энергии для его протекания. ФС-2 осуществляет окисление воды с образованием молекулярного кислорода, со­гласно реакции: 2Н20 + 4hv —О2 + 4е+ 4Н+, где hv обозначает квант света, е—электрон. В результате фотохимического акта реакционного центра ФС-2 образуется самый сильный биологический окислитель — окисленный хлорофилл, который окисляет воду с участием марганецсодержащей энзиматической системы. Электроны, оторванные от воды, че­рез цепь темновых реакций поступают на ФС-1, ис­пользующую их для фотовосстановления НАДФ+ до НАДФН, которое тоже осуществляется с участи­ем специальной энзиматической системы. Окисле­ние воды, а также перенос электронов от ФС-2 к ФС-1 приводит к появлению разности концент-

Рис. 5. Схематическое изображение фотосинте­тической цепи переноса электрона в хлоропласах растений и цианобактерий. (Мп)4 - Комплекс из четырех атомов Мп, связан­ных с белками реакционного центра фотосистемы 2 (ФС-2); Z - вторичный донор электрона ФС-2, (остаток тирозина); Пбао - первичный донор элек­трона ФС-2 (димер хлорофилла); *П680 - возбуж­денное состояние хлорофилла П680; Фео - первич­ный акцептор электрона ФС-2, феофитин; QA и QB -акцепторы электрона хиноновой природы; цит в./f-комплекс цитохромов, участвующих в переносе электрона от ФС-2 к фотосистеме 1 (ФС-1); Пц - пластоцианин (подвижный переносчик электро­на); П700 - первичный донор электрона ФС-1 (ди­мер хлорофилла); *П700 - возбужденное состоя­ние П700;Хла-(хлорофилл) и Ох-(хинон), соответ­ственно, первичный и вторичный акцепторы электрона ФС-1; Fx, Fa и Fb акцепторы электрона ФС-1 (Fe-S-центры); Фд - ферредоксинраство­римый переносчик электрона (Fe-S-содержащий белок); НАДФ+ - никотинамидаденин динуклеотид фосфат (конечный переносчик электронов, используемый вместе с АТФ в ассимиляции СО2), hv - квант света. По вертикальной шкале указаны приблизительные значения окислительно-вос­становительных потенциалов переносчиков элек­трона при рН 7.

раций ионов Н+ по обе стороны тилакоидной мембраны, которая, как и в случае митохондрий, необходима для осуществления процесса фосфо-рилирования — образования АТФ, основного энер­гетического эквивалента, используемого в качестве источника энергии в биологических процессах. Об­разованные в результате фотохимического перено­са электронов АТФ и НАДФН используются для восстановления СО2 с образованием первичных са-харов, которое в упрощенном виде можно описать следующим образом: СО2 + 4е + 4Н+ —*• СН2О + + Н2О. При этом на каждую молекулу СО2 расходу­ется две молекулы НАДФН и три молекулы АТФ. Этот процесс, в результате которого "восстановлен­ная" молекула СО2 включается в состав гексозы, осуществляется через ряд стадий с участием слож­ного цикла энзиматических реакций, получившего название цикла Кальвина по имени его открывателя. В заключение необходимо отметить, что иссле­дование фотосинтеза — сложнейшего фундамен­тального биологического процесса, имеющее дав­ние традиции в отечественной науке, привлекает в настоящее время внимание все большего числа ес­тествоиспытателей — биологов, физиков, химиков, математиков. Познание молекулярных механизмов фотосинтеза будет иметь большое значение для обеспечения человечества экологически чистой энергией за счет практически неиссякаемого источ­ника — солнечного излучения (например, на основе фоторазложения воды на молекулярной водород и кислород), для повышения фотосинтетической продуктивности растений, лежащей в основе обес­печения человечества пищей, для использования принципов фотопреобразования световой энергии при фотосинтезе в фотобиотехнологических и фо­тобиотехнических системах, для обеспечения дли­тельных космических экспедиций органикой и мо­лекулярным кислородом, для решения проблем экологической безопасности отдельных регионов, для сохранения и развития биосферы.

Перейти на страницу: 1 2 3 4 5

Дополнительно

Использование роботов на промышленных предприятиях
Рассмотрим конкретные задачи , которые роботы решают в настоящее время на промышленных предприятиях. Их можно разделить на три основных категории : - манипуляции заготовками и изделиями - обработка с помощью ...

Спутниковая связь
Современные организации характеризуются большим объемом различной информации, в основном электронной и телекоммуникационной, которая проходит через них каждый день. Поэтому важно иметь высококачественный выход на коммутационные узлы, которые обеспечивают выход на все важные коммуникационные линии. ...

Меню сайта