Об одном кулисно-рычажном механизме

Смоляков Андрей Анатольевич, старший научный сотрудник РФЯЦ-ВНИИЭФ .

Уповалов Вячеслав Владимирович, научный сотрудник РФЯЦ-ВНИИЭФ .

Предлагается к рассмотрению кулисно-рычажный механизм, в котором осуществляется преобразование вращательного движения кулачка в качание кулисы. Механизм может быть реализован двумя способами, как показано на рис. 1 и 2. Устройство состоит из кулачка, вращающегося вокруг постоянной оси, и кулисы с двумя направляющими. Кулиса, с жестко заделанными направляющими, качается вдоль своей оси качания, перпендикулярной оси вращения кулачка. В каждый момент времени кулачок касается обеих направляющих (каждой в одной точке) за счет выбора формы кулачка (в первом варианте) или направляющих (во втором варианте). В первом варианте (см. рис. 1) направляющие имеют форму цилиндров, а во втором варианте (см. рис. 2) кулачок выполнен в форме цилиндра.

Рис. 1.

Для нахождения функции, описывающей форму кулачка для первого варианта, необходимо решить дифференциальное уравнение (1.1).

(1.1)

при, где

- максимальный угол отклонения кулисного механизма с направляющими вокруг оси качания кулисы;

l - расстояние между осями направляющих кулисного механизма;

r - радиус направляющей:

H - радиус качания кулисы (перпендикуляр от центра оси качания кулисы к отрезку, соединяющему центры направляющих);

L - радиус вращения кулачка (между центром кулачка и центром оси вращения кулачка).

Оси x и y лежат в плоскости определяющей кулачка и направлены соответственно вдоль максимального и минимального диаметров.

Уравнение (1.1) имеет вид дифференциального уравнения Клеро. Как известно, дифференциальное уравнение Клеро /1/ имеет особый интеграл (в параметрической форме) и, причем. Правая часть дифференциального уравнения (1.1) - это. После подстановки имеем параметрическое решение уравнения (1.1) в виде:

Для нахождения функции, описывающей форму направляющих для второго варианта (рис. 2), необходимо решить систему из 3-х уравнений (2.1), (2.2) и (2.3), приведенных ниже. Уравнение (2.1) определяет, что каждая точка направляющей лежит на окружности - кулачке. Дифференциальное уравнение (2.2) определяет, что в точках соприкосновения кулачка и направляющих совпадают производные, т.е. происходит касание. Уравнение (2.3) (следует из) определяет, что конструкция жестко связана.

(2.1) (2.2) (2.3)

Рис. 2.

при очевидных граничных условиях

и , где

- максимальный угол отклонения кулисного механизма с направляющими вокруг оси качания кулисы;

- угол отклонения кулисного механизма с направляющими вокруг оси качания кулисы;

- угол поворота кулачка вокруг оси собственного вращения при отклонении кулисы на угол;

l - расстояние между осями направляющих кулисного механизма;

R - радиус кулачка;

H - радиус качания кулисы (перпендикуляр от центра оси качания кулисы к отрезку, соединяющему центры направляющих);

L - радиус вращения кулачка (между центром кулачка и центром оси вращения кулачка).

Ось x направлена вдоль центральной оси направляющей, ось y - перпендикулярно к оси x. Начало координат - середина направляющей, самое ?узкое¦ место. Координата y определяет радиус сечения направляющей в точке с координатой x. Продифференцируем (2.1) по x:

Перейти на страницу: 1 2 3

Дополнительно

Планета солнечной системы Уран
Даже в XVIII в. планетная система была известна только до Сатурна. Но уже тогда предполагали, что Сатурном список планет не оканчивается, что существуют еще более далекие планеты, которые невооруженным глазом увидеть нельзя. Это мнение блестяще подтвердилось, когда в 1781 г. знаменитый английский ...

Спутниковая связь
Современные организации характеризуются большим объемом различной информации, в основном электронной и телекоммуникационной, которая проходит через них каждый день. Поэтому важно иметь высококачественный выход на коммутационные узлы, которые обеспечивают выход на все важные коммуникационные линии. ...

Меню сайта