Математическая модель квазипериодической структуры СВЧ линий замедления

(2.6) , и аналогично (2.7).

Полученные выражения (2.6) и (2.7) являются характеристическими функциями квазипериодической пространственной структуры ЛЗ с нормаль-ным законом распределения ширины стенок и щелей.

Как в оптических, так и в электронных устройствах спектрального анали-за сигналов, существует возможность получения как амплитудного, так и энергетического их спектров. Однако в теории спектрального анализа пространственных сигналов известно, что при использовании квадратичес-ких фотодетекторов для регистрации параметров дифракционного изобра-жения, формируемого оптической системой КОС, автоматически на ее вы-ходе формируется энергетический спектр исследуемого сигнала. Парамет-ры такого спектра могут быть измерены соответствующими контрольно-измерительными приборами, а форма его определена с применением мето-дов статистической радиооптики путем интегрального преобразования Винера-Хинчина, либо на основе теоремы Хилли.

Поэтому используя аналогию математических методов исследования спектральных характеристик пространственных и временных сигналов, распределение комплексных амплитуд спектра пропускания в дифракционном изображении пространственной квазипериодической струк-туры ЛЗ, можно определить как , или с уче-том (2.5) .

Полученное выражение описывает амплитудный спектр функции пропускания квазипериодической пространственной структуры ЛЗ. Энерге-тический спектр этой функции может быть определен с помощью теоремы Хилли [3.11] как , или же

.

Однако в работах [16, 17] показано, что для квазипериодического сигнала, описываемого единично-нулевой функцией вида (2.4)

(2.8), где - дискретная составляющая спектра на нулевой частоте, которая для квазипериодической структуры ЛЗ будет равна

(2.9) , а - непрерывная составляющая спектра, равная: (2.10), что справедливо для и не равных 1, согласно [3.35].

В выражениях (2.9) и (2.10) параметр является пространственной частотой энергетического спектра исследуемого сигнала, величина которой определяется коэфициентом масштаба и зависит от схемы построения и геометрических размеров оптической системы КОС.

Для определения формы энергетического спектра пространственной структуры ЛЗ рассмотрим вещественную часть комплексной дроби в выражении (2.10), обозначив ее через В, т.е.

(2.11). Подставив в (2.11) выражения (2.6) и (2.7) характеристических функций и получим:

Перейти на страницу: 1 2 3 4

Дополнительно

Эвристика и ее применение
В своей повседневной жизни человек все время сталкивается с задачами легкими для него, но с трудом решаемыми машинами. Тяжело создать программу, которая предусматривала бы все. Поэтому в условиях недостаточности или сложности информации человек практически незаменим. Преодолеть же пропасть между м ...

Современная судовая газотурбинная установка
Современная судовая газотурбинная установка (ГТУ) успешно конкурирует с аналогичными по назначению паротурбин­ными и дизельными. От последних она выгодно отличается ком­пактностью и малой удельной массой, маневренностью и высокой ремонтопригодностью, лучшей приспособленностью к автоматиза­ции ...

Меню сайта