Расчетная часть

Применив принцип Гюйгенса-Френеля (5.3), можно определить распре-деление светового поля в плоскости х2у2 перед фурье-объективом, а поле за ним - применив (5.2).

Таким образом, распределение поля в плоскости х3у3 анализа будет описываться :

, где - оператор Френеля для преобразования поля на i-м участке свободного пространства толщиной li.

Распределение поля в плоскости х2у2 за фурье-объективом, согласно (5.2) будет

, а подставив (5.6) в (5.7) с учетом (5.3), распределение поля в плоскости х3у3 анализа можно представить в виде :

,

где .

Учитывая (5.16) и (5.20) выражение (5.14) можно представить в виде:

(5.23),

откуда видно, что квадратичные фазовые искажения фурье-образа (5.14) сигнала устранимы не только при освещении входного транспаранта плос-кой, но и сферической волной при выполнении условий (5.18 ) и (5.22).

Выходной электрический сигнал ФИС представляет собой решение известной в оптике задачи о набегании светового пятна, распределение освещенности в котором описывается выражением:

, на узкую щеле-вую диафрагму вдоль координаты х3. Наиболее общим методом решения подобных задач является вычисление интеграла свертки функции освещенности с функцией пропускания полевой диафрагмы ФИС, равной:

(5.24), где - ширина щели вдоль координаты х3, - высота щели вдоль координаты у3.

Распределение комплексных амплитуд световой волны в плос-

кости х3у3 анализа КОС описывается выражением (5.23) и является прост-ранственно-частотным фурье-образом входного сигнала т.е.

.

Из уравнений Максвелла для электромагнитной волны следует, что энергия преносимая волной, пропорциональна квадрату амплитуды напря-женности электромагнитного поля, т.е.

(5.25), где К - постоянный коэфициент, зависящий от свойств среды, где распостраняется электромагнитная волна [14, 23]. Поэтому пространственно-частотный энергетический спектр входного сигнала пропорционален распределению освещенности в плоскости спектрального анализа КОС, т.е.

(5.26), где ,

- взаимосвязь между пространственными х(у) и пространственно-частотными координатами в плоскости спектрального анализа КОС; комплексная постоянная, определяемая (5.8).

Перейти на страницу: 1 2 3 4

Дополнительно

Методы оценки близости допредельных и предельных распределений статистик
Рассматривается проблема оценки близости предельных распределений статистик и распределений, соответствующих конечным объемам выборок. При каких объемах выборок уже можно пользоваться предельными распределениями? Каков точный смысл термина "можно" в предыдущей фразе? Основное внимание уд ...

Принципы промышленной первичной переработки нефти
...

Меню сайта