Расчет стальной балочной клетки

Проверка прочности настила:

Изгибающий момент с учетом приварки настила на опорах:

Растягивающая сила

Проверка прочности полосы настила шириной b

= 1 м.

,

где W=(t2Н)/6 =0,0122/6 = 2,4×10-5 м3

gСRg =1,1×230 = 253 МПа, где R

g

=230 МПа - расчетное сопротивление проката по табл. 51* СНиП II-23-81*

s < gСRg - условие выполняется.

Расчет сварного шва крепления настила к балке.

1. Расчет по металлу шва

- коэффициент глубины провара шва b

f= 0,7 (табл. 34* СНиП II-23-81*)

- коэффициент условия работы шва g

wf= 1 (по п.11.2 СНиП II-23-81*)

В соответствии с табл. 55 СНиП II-23-81* принимаем электроды типа Э42. Расчетное сопротивление металла шва R wf = 180 МПа.

bf ×gwf × R wf = 0,7 × 1 × 180 = 126 МПа

2. Расчет по металлу границы сплавления.

- коэффициент глубины провара шва b

z= 1,0 (табл.34 СНиП II-23-81*)

- коэффициент условия работы шва g

wz= 1 (п.11.2* СНиП II-23-81*)

Расчетное сопротивление по металлу границы сплавления:

R wz = 0,45 Run = 0,45 × 360 = 162 МПа (по табл. 3 СНиП II-23-81*),

где Run - нормативное сопротивление фасонного проката.

bz× gwz × R wz = 1×1×162 = 162 МПа

Минимальная из величин при расчетах по металлу шва и по металлу границы сплавления (b× gw × R w)min = 126 МПа

Требуемый катет шва

Принимаем Кf= Кfmin

= 5 мм

Расчет балки настила

Балку рассчитываем как свободно опертую, загруженную равномерной нагрузкой. Пролет равен шагу главных балок 7 м.

Погонную нагрузку собираем с полосы шириной, равной пролету настила

= 1,944 м.

а) нормативная нагрузка:

qHб = qn LH + gHб = qn LH + 0,02 qn LH = 12,924 × 1,944 + 0,02 × 12,924 × 1,944 = 25,63 кН/м, где в первом приближении вес балки принимаем равным 2% от нагрузки.

б) расчетная нагрузка:

qб = q LH + gHбgf = 15,37 × 1,944 + 0,502 × 1,05 = 30,41 кН/м

Изгибающий момент от расчетной нагрузки

Требуемый момент сопротивления

,

где с1= 1,1 - коэффициент, учитывающий развитие пластических деформаций в первом приближении.

Требуемый момент инерции по предельному прогибу (при Lбн

= 7 м n0= 202,78)

Принимаем двутавр №40Б1 ГОСТ 26020-83 (Jх = 15 750 см4, Wх = 803,6 см3, А = 61,25 см2, bf = 165 мм, tf = 10,5 мм, tw = 7,0 мм, h = 39,2 см, масса mбн = 48,1 кг/м)

Уточним коэффициент с1:

площадь сечения стенки Аw = tw (h- 2tf) = 0,7(39,2 - 2 × 1,05) = 25,97 см2

площадь сечения полки Аf = (A - Aw) × 0,5 = (61,25 - 25,97) × 0,5 = 17,64 см2

По табл. 66 СНиП II-23-81* коэффициент с

= 1,091. Принимаем с1 = с

.

Уточним собственный вес балки и всю нагрузку

а) нормативная

qHб = qn LH + mбн g = 12,924 × 1,944 + 48,1 × 9,81 × 10-3 = 25,60 кН/м

б) расчетная

qб = q LH + mбн ggf = 15,37 × 1,944 + 48,1 × 9,81 × 10-3 × 1,05 = 30,37 кН/м

Максимальный изгибающий момент

Проверка нормальных напряжений

Перейти на страницу: 1 2 3 4 5 6 7

Дополнительно

Расчет релаксационного генератора на ИОУ
Разработать и рассчитать релаксационный генератор на ИОУ (интегральной схеме операционного усилителя) в соответствии с данными, представленными: · вид генератора - мультивибратор · режим работы – автоколебательный · период следования импульсов Т, мс – 0.09 · ...

Развитие представлений о природе тепловых явлений и свойств макросистем
Вокруг нас происходят явления, внешне весьма косвенно связанные с механическим движением. Это явления, наблюдае­мые при изменении температуры тел, представляющих собой макросистемы, или при переходе их из одного состояния (например, жидкого) в другое (твердое либо газообразное). Та­кие явления наз ...

Меню сайта