Классификация объектов нечисловой природы на основе непараметрических оценок плотности
В СССР в середине 70-х годов активно ведутся работы по статистическому анализу нечисловых данных [1]. В настоящее время во Всесоюзном центре статистических методов и информатики мы при разработке методических документов и программных продуктов по прикладной статистике делим ее на четыре части соответственно виду обрабатываемых статистических данных: на статистику случайных величин, многомерный статистический анализ, статистику временных рядов и случайных процессов, статистику объектов нечисловой природы (другими словами, статистику нечисловых данных).
Вероятностный и статистический анализ нечисловых данных сопровождали теорию вероятностей и математическую статистику с самого начала их развития. Типичными примерами являются урновые схемы и изучение рождаемости. Испытание Бернулли- вероятностная модель простейшего объекта нечисловой природы. Наиболее массовым применением статистических методов является, видимо, выборочный контроль качества продукции по альтернативному признаку (т. е. по признаку "годен” - “не годен"), относящийся, очевидно, к статистике объектов нечисловой природы [2].
Развитие прикладных исследований привело к необходимости рассмотрения в качестве статистических данных различных объектов нечисловой природы. Этот термин применяем к объектам, которые нецелесообразно рассматривать как описанные числами. Другими словами, речь идет об элементах пространства, не являющихся линейными (векторными). Примеры: бинарные отношения (ранжировки, разбиения, толерантности и т. д.); множества; нечеткие множества; результаты измерений в шкалах, отличной от абсолютной; как обобщение перечисленных объектов - элементы пространств общей природы. Для результатов наблюдений, являющихся объектами нечисловой природы, рассматривают [1] классические задачи статистики: описание данных (включая классификацию) оценивание (параметров, характеристик, плотности распределения, регрессионной зависимости и т. д.).
Математический аппарат статистики объектов нечисловой природы основан не на свойстве линейности пространства, а на применении симметрик и метрик в нем, поэтому существенно отличается от классического.
В прикладных работах наиболее распространенный пример объектов нечисловой природы - разнотипные данные. В этом случае реальный объект описывается вектором, часть координат которого - значения количественных признаков, а часть - качественных (номинальных и порядковых).
Основная цель настоящего раздела - обосновать новый подход [3] к классификации в пространствах произвольной природы, основанный на построении не параметрических оценок плотности распределений вероятности в таких пространствах [4].
" Пусть
- измеримое пространство,.
и
. суть
-конечные меры на
., причем
абсолютно непрерывна относительно
, т. е. из равенства.
. =0 следует равенство
=0, где
В этом случае на
существует неотрицательная измеримая функция такая, что
Дополнительно
Оборудование для механического обезвоживанья и сушки текстильных материалов
Сушка является самым распространенным технологическим
процессом красильно-отделочного производства. На многих отделочных фабриках
сушильное оборудование занимает приблизительно до 30 % производственных
площадей, потребляет до 40 % всего расходуемого тепла и до 30 % электроэнергии.
Одним из эффек ...
Репрезентативная теория измерений и её применения
Репрезентативная теория
измерений (РТИ) согласно принятой в обзоре [1] классификации научных
направлений является одной из составных частей статистики объектов нечисловой
природы. Основные понятия этой теории и некоторые ее применения рассматривались
в обзорах [1,2], в которых приведено так ...