Классификация объектов нечисловой природы на основе непараметрических оценок плотности

Методы оценивания плотности вероятности в пространствах общего вида предложен и первоначально изучены в [4]. В частности, в задачах классификации объектов нечисловой природы предлагаем использовать непараметрические ядерные оценки плотности типа Парзена-Розенблатта (этот вид оценок и его название введены нами в [4]):

,

где К: - ядерная функция - выборка по которой оценивается плотностью, - расстояние между элементом выборки и точкой , в которой оценивается плотность последовательность показателей размытости такова, что при 0 и n, а - нормирующий множитель, обеспечивающий выполнение условия

Оценки типа Парзена-Розенблатта - частный случай линейных оценок [4]. В теоретическом плане они выделяются тем, что удается получать результаты такого же типа, что в классическом одномерном случае (), но, разумеется, с помощью совсем иного математического аппарата.

Одна из основных идей состоит в том, чтобы согласовать между собой расстояние и меры . А именно, рассмотрим шары радиуса

и их меры

Предположим, что как функция при фиксированном непрерывна и строго возрастает. Введем функцию

Это - монотонное преобразование расстояния, а потому - метрика или симметрика (т. е. неравенство треугольника может быть не выполнено), которую, как и , можно рассматривать как меру близости между и .

Введем

.

Поскольку определена однозначно, то

^

где ., а потому

Переход от к напоминает классическое преобразование, использованное Н. В. Смирновым, , переводящее случайную величину с непрерывной функцией распределения в случайную величину , равномерно распределенную на [ 0, 1]. Оба рассматриваемых преобразования существенно упрощают дальнейшие рассмотрения.

Перейти на страницу: 1 2 3 4 5 6

Дополнительно

Планета солнечной системы Уран
Даже в XVIII в. планетная система была известна только до Сатурна. Но уже тогда предполагали, что Сатурном список планет не оканчивается, что существуют еще более далекие планеты, которые невооруженным глазом увидеть нельзя. Это мнение блестяще подтвердилось, когда в 1781 г. знаменитый английский ...

Галактика как уровень мегамира
Актуальность, цели и задачи ответа по настоящей контрольной работе будут обусловлены следующими положениями. Нас интересует не только звездное население того дома, в котором мы живем. Нас интересует и архитектура этого дома и его размеры; интересует, как его обитатели расселены, где жилищная тесно ...

Меню сайта