Классификация объектов нечисловой природы на основе непараметрических оценок плотности

Преобразование зависит от точки , что не влияет на дальнейшие рассуждения, поскольку ограничиваемся изучением сходимости в точке.

Функцию , для которой мера шара радиуса равна , называют [4] естественным показателем различия или естественной метрикой. В случае пространства и евклидовой метрики имеем

где -объем шара единичного радиуса в .

Поскольку можно записать, что

где

то переход от к соответствует переходу от к . Выгода от такого перехода заключается в том, что утверждения приобретают более простую формулировку.

ТЕОРЕМА 1. Пусть - естественная метрика,

Плотность непрерывна в и ограничена на , причем . Тогда , оценка является состоятельной, т. е. по вероятности при ,

Теорема 1 доказана в [4]. Однако остается открытым вопрос о скорости сходимости ядерных оценок, т. е. о поведении величины

и об оптимальном выборе показателей размытости .

Введем круговое распределение и круговую плотность .

ТЕОРЕМА 2. Пусть ядерная функция непрерывна и при . Пусть круговая плотность допускает разложение

причем остаточный член равномерно ограничен [0, 1, , ]. Пусть

Перейти на страницу: 1 2 3 4 5 6

Дополнительно

Новая фундаментальная физическая константа, лежащая в основе постоянной Планка
Открыта новая фундаментальная физическая константа hu “фундаментальный квант действия” [11 - 15]. Ее значение равно [11,12,23]: hu=7,69558071(63)•10-37Дж с. На основе классических представлений для электромагнетизма получены еще две физиче ...

Взаимозаменяемость, стандартиризация и технические измерения
Выполнение данной курсовой работы преследует собой следующие цели: – научить студента самостоятельно применять полученное знание по курсу ВСТИ на практике; – изучение методов и процесса работы со справочной литературой и информацией ГОСТ; – приобретение необхо ...

Меню сайта