Классификация объектов нечисловой природы на основе непараметрических оценок плотности

Преобразование зависит от точки , что не влияет на дальнейшие рассуждения, поскольку ограничиваемся изучением сходимости в точке.

Функцию , для которой мера шара радиуса равна , называют [4] естественным показателем различия или естественной метрикой. В случае пространства и евклидовой метрики имеем

где -объем шара единичного радиуса в .

Поскольку можно записать, что

где

то переход от к соответствует переходу от к . Выгода от такого перехода заключается в том, что утверждения приобретают более простую формулировку.

ТЕОРЕМА 1. Пусть - естественная метрика,

Плотность непрерывна в и ограничена на , причем . Тогда , оценка является состоятельной, т. е. по вероятности при ,

Теорема 1 доказана в [4]. Однако остается открытым вопрос о скорости сходимости ядерных оценок, т. е. о поведении величины

и об оптимальном выборе показателей размытости .

Введем круговое распределение и круговую плотность .

ТЕОРЕМА 2. Пусть ядерная функция непрерывна и при . Пусть круговая плотность допускает разложение

причем остаточный член равномерно ограничен [0, 1, , ]. Пусть

Перейти на страницу: 1 2 3 4 5 6

Дополнительно

Развитие атомной энергетики в Украине
Наше время называю атомным не только и не столько потому, что оно было ознаменовано гениальными открытиями в области строения атома, а и потому, что человек нашёл полезное применение фантастически огромной энергии, источником которой стал неизмеримо малый атом. Ионизирующее излучение (атомная р ...

Технология выращивания сахарной свеклы в Сумской области
Сахарная свекла - важная техническая культура, корнеплод которой достигает 500г и больше, содержит 19-22% сахара и более, является основным сырьем для сахарной промышленности. Кроме сахара, в процессе переработки корнеплодов получают ценные дополнительные продукты - мелясу и жом. Ботва сахарной св ...

Меню сайта