Классификация объектов нечисловой природы на основе непараметрических оценок плотности

Тогда

Величина достигает минимума, равного

при

что совпадает с классическими результатами для (см. [9, с316]). Заметим, что для уменьшения смещения оценки приходится применять знакопеременные ядра .

В случае дискретных пространств естественных метрик не существует. Однако можно получить аналоги теорем 1 и 2 переходя к пределу не только по объему выборки , но и по параметру дискретности .

Пусть - последовательность конечных пространств, - расстояния в

для любого .

Положим

,

,

,

Тогда функции кусочно постоянны и имеют скачки в некоторых точках , причем .

ТЕОРЕМА 3. Если при (другими словами, при ), то существует последовательность параметров дискретности такая, что при , , справедливы заключения теорем 1 и 2.

ПРИМЕР 1. Пространство всех подмножеств конечного множества из элементов допускает [10, Пар 4. 3] аксиоматическое введение метрики , где - символ симметрической разности множеств. Рассмотрим непараметрическую оценку плотности типа Парзена - Розенблатта , где - функция нормального стандартного распределения. Можно показать, что эта оценка удовлетворяет условиям теоремы 3 .

Перейти на страницу: 1 2 3 4 5 6

Дополнительно

Структурная и молекулярная организация генного вещества
Почти полвека тому назад, в 1953 г., Д. Уотсон и Ф. Крик открыли принцип структурной (молекулярной) организации генного вещества - дезоксирибонуклеиновой кислоты (ДНК) [1]. Структура ДНК дала ключ к механизму точного воспроизведения - редупликации - генного вещества [2]. Так возникла новая наука ...

Детские дошкольные учреждения – сады-ясли
Двадцатое столетие для рядя стран Европы характерно процессами интенсивной урбанизации в связи с индустриализацией производства и соответствующим размахом градостроительной деятельности. В нашей стране процесс урбанизации привел к исключительно острой проблеме обеспечения жилищем и общественны ...

Меню сайта