Полимерные электреты, их свойства и применение

Для практических и научных целей наиболее интересен случай расчета полей, когда электрет с одним напыленным металлическим электродом помещен на некотором расстоянии от второго металлического электрода, причем оба электрода соединены проводником - коротко замкнуты (рис. 13). Такая конфигурация характерна для установок, измеряющих параметры электрета, а также для всех типов электроакустических преобразователей - микрофонов, телефонов и др. Она же позволяет рассмотреть как предельные случаи свободный электрет и электрет с плотно прилегающими или напыленными обеими электродами.

Рассмотрим сначала простейший случай, доступный даже школьникам старших классов, когда поверхность полимерной пленки однородно заряжена - поверхностная плотность заряда одинакова во всех точках поверхности и равна ст. На практике такой случай бывает при электризации в коронном разряде.

Введем обозначения: s - толщина пленки, ε - диэлектрическая проницаемость пленки, s1- толщина зазора между электретом и верхним электродом 2, ε1- диэлектрическая проницаемость вещества в зазоре, Е - напряженность электрического поля внутри пленки, D - электрическая индукция в пленке, Е1 - напряженность электрического поля в зазоре. D1, - индукция электрического поля в зазоре, V - разность потенциалов между нижним электродом и поверхностью электрета (электретная разность потенциалов или поверхностный потенциал электрета), V1 - разность потенциалов в зазоре между поверхностью электрета и верхним электродом.

Поля в зазоре и в пленке, очевидно, будут однородными. Поэтому для их определения достаточно записать два уравнения: условие для нормальной проекции вектора электрической индукции на границе раздела диэлектриков, на которой имеется слой избыточного заряда:

D1-D=σ (6)

и условие короткого замыкания электродов 1 и 2:

V1+V=0 (7)

Переходя в уравнениях (6) и (7) к напряженностям, получаем систему двух уравнений относительно неизвестных полей Е и Е1:

* ε1ε0Е1-εε0Е=σ (8)

* sE+s1E1=0 (9)

Решая систему, после несложных преобразований получим:

(10)

(11)

В предельном случае, когда электрод 2 удаляют на бесконечность от поверхности электрета, получается т.н. «свободный» электрет. Из 'формулы (11) видно, что поле в зазоре при этом исчезает, а в электрете становится равным:

(12)

Последнее выражение полностью совпадает с полем плоского бесконечно протяженного конденсатора с диэлектриком. В этом нет ничего удивительного, так как и в электрете и в конденсаторе имеются два противоположных по знаку параллельных слоя зарядов, одинаковых по величине. Их электрические поля по принципу суперпозиции складываются, внутри векторы напряженности полей слоев сонаправлены. а вне - противоположно направлены и компенсируют друг друга. Итак, свободный электрет бесконечной протяженности не создает в пространстве электрического поля. Однако для реальных электретов (как и плоских конденсаторов) этот вывод может быть использован с известной осторожностью, так как у них имеются края заряженной области, вблизи которых поле неоднородно и силовые линии выходят наружу. Кроме того, при зарядке могут возникнуть неоднородности в распределении поверхностного заряда по площади электрета, что также приведет к выходу силовых линий из электрета в окружающее пространство.

В этом можно убедиться, поставив простейший эксперимент. Надо положить заряженный электрет на лабораторном столе и подождать несколько дней. Оседающая из воздуха пыль, которая притягивается к местам выхода силовых линий, «проявит» рельеф поверхностного заряда. В центре образца поверхность остается чистой или менее запыленной, чем по краям, где видны резкие полосы осажденной пыли. Опыт, разумеется, можно ускорить, искусственно распыляя пыль над поверхностью электрета

Электрические поля электрета с пространственным зарядом

Теперь рассмотрим более сложный случай, когда в электрете имеется объемный заряд с плотностью ρ(х) (см. рис 8), а на поверхности пленки (при х=s) поверхностный заряд отсутствует (σ=0). Поле внутри электрета теперь не будет однородным. В этом легко убедиться, воспользовавшись уравнением Максвелла для вектора индукции электростатического поля:

divD=ρ.(13)

Перейти на страницу: 3 4 5 6 7 8 9 10 11 12 13

Дополнительно

Биологическое время и его моделирование в квазихимическом пространстве
Методология построения теории времени естественных объектов, детально изложена [1, 2]. В данной работе рассмотрены компоненты этой теории на примере клеточной популяции. ...

Современный прокатный стан
Современный прокатный стан представляет собой технологический комплекс последовательно установленных машин, используемых для получения прокатных изделий заданных размеров с необходимыми качественными показателями. Производительность прокатного стана определяется пропускной способностью отдельных а ...

Меню сайта