Полимерные электреты, их свойства и применение

В нашем случае ρ зависит только от одной координаты (х), от одной координаты будут зависеть напряженность и индукция электрического поля. Кроме того, векторы направлены вдоль оси ОХ, что позволяет рассматривать только одну их проекцию на эту ось, модуль которой равен модулю соответствующего вектора. Тогда в уравнении (13) получим:

или, с учетом связи векторов D и Е:

(14)

То, что производная Е(х) отлична от нуля, доказывает зависимость от х вектора Е, т.е.

неоднородность поля внутри электрета. Аналогичное уравнение можно записать для зазора, где нет пространственного заряда:

(15)

Поле Е,. очевидно, будет однородным. Система дифференциальных уравнений (14)-(15), дополненная двумя граничными условиями:

D1-D=0 или ε1ε0Е1-εε0Е=0 (16)

V+V1=0 или (17)

позволяет решить задачу - найти электрические поля в электрете и зазоре.

Интегрируя по х (14) и (15), получаем общее решение:

(18) E1=C2 (19)

в которое входят две произвольные постоянные - С/ и С,. Их легко найти, подставив (18) и (19) в граничные условия (16) и (17), в результате получается система двух алгебраических уравнений с двумя неизвестными:

Решая систему, находим произвольные постоянные, а затем и выражения для электрических полей в зазоре и пленке:

(20)

(21)

. Частные случаи полей электретов с пространственным зарядом

Полученные выражения носят общий характер, из них можно получить конкретные выражения для полей, если подставить выражение для объемной плотности захваченного заряда ρ(х).

Электрет с поверхностным зарядом

Рассмотрим, например, случай, когда заряд распределен по поверхности с поверхностной плотностью ст. Найдем выражение для

объемной плотности заряда.

Рассмотрим рис. 14

Рис. 14

Выделим на пленке участок площадью S и объемом V =Ss. Полный заряд выделенного участка Q=σS. С другой стороны, этот же заряд можно вычислить через объемную плотность заряда:

откуда получаем связь σ и р(х):

(22)

Плотность заряда ρ(х)в пленке всюду равна 0, и только на самой поверхности (при х=s) обращается в бесконечность, так как весь заряд сосредоточен в слое бесконечно малого приповерхностного объема. В математике известна функция, обладающая такими свойствами - дельта-функция Дирака δ(х). Она равна нулю при всех значениях аргумента, кроме х = 0, при котором обращается в бесконечность. Логично поэтому представить объемную плотность заряда ρ (х) в виде произведения некоторой постоянной а на дельта-функцию δ(х-s), принимающую бесконечное значение при х = s:

ρ(x)=aδ(x-s) (23)

Дельта-функция обладает следующим свойством:

(24)

где f(x)- произвольная функция.

Бесконечные пределы можно заменить на конечные, включающие точку «скачка» дельта-функции, поскольку вне этой области подынтегральное выражение равно нулю. В нашем случае достаточно ограничиться пределами от 0 до s. Интегрируя (23) в этих пределах, по свойству (24) получаем:

(25)

Сравнивая с (22), приходим к выводу, что постоянная а равна δ. Таким образом, выражение для ρ(х) приобретает вид:

ρ(х)=σδ(x-s) (26)

Вычислим поля Е и E1, подставив в общие формулы (20) и (21) выражение (26):

Перейти на страницу: 4 5 6 7 8 9 10 11 12 13 14

Дополнительно

Расчет релаксационного генератора на ИОУ
Разработать и рассчитать релаксационный генератор на ИОУ (интегральной схеме операционного усилителя) в соответствии с данными, представленными: · вид генератора - мультивибратор · режим работы – автоколебательный · период следования импульсов Т, мс – 0.09 · ...

Планета солнечной системы Уран
Даже в XVIII в. планетная система была известна только до Сатурна. Но уже тогда предполагали, что Сатурном список планет не оканчивается, что существуют еще более далекие планеты, которые невооруженным глазом увидеть нельзя. Это мнение блестяще подтвердилось, когда в 1781 г. знаменитый английский ...

Меню сайта